آمار پارامتری
آمار پارامتری
آمار پارامتری به مجموعه روشهای آماریای گفته میشود که مدلای پارامتری برای پدیدهٔ احتمالی مورد مطالعه فرض میشود و همهٔ استنتاجهای آماری از آن پس بر اساس آن مدل انجام میشود.

به عنوان مثال فرض میشود که توزیع نمرههای یک امتحان از توزیع نرمال پیروی میکند. در نتیجه برای مشخصشدن توزیع احتمال، کافی است میانگین و واریانس توزیع را از روی دادههای تجربی (نمرههای دانشآموزان) به دست بیاوریم. حال برای پاسخگفتن به سوالهایی چون «درصد دانشآموزانی که نمرهای بین ۱۰ تا ۱۵ آوردهاند» از تابع توزیع به دست آمده استفاده میکنیم (البته بدیهی است که روشهای سادهتری نیز برای چنین کاری وجود دارد).
نقطهٔ ضعف این شیوهٔ تحلیل آماری این است که در صورتی که مدل فرضشده با واقعیت تطبیق نداشته باشد، نتیجهگیریها صحیح نخواهد بود.
آماره
آماره در آمار به عددی گویند که یک توزیع نمونهبرداری را خلاصهسازی یا توصیف میکند.
تابع U=g(X۱, X۲, …, Xn) از نمونهٔ تصادفی X۱, X۲, …, Xn را که در آن پارامتر مجهولی وجود نداشته باشد یک آماره میگویند. در این تعریف U یک متغیر تصادفی است که توزیع آن ممکن است به پارامتر بستگی نداشته باشد؛ اما تنها آمارههایی برای برآورد کردن مفید هستند که توزیعشان به پارامتر مجهول بستگی داشته باشد و اطلاعاتی در مورد این پارامتر به ما بدهند.
آنتروپی آماری
انتروپی آماری یک کمیت ترمودینامیکی است که در شیمیفیزیک کاربردهای فراوان دارد.
استنباط آماری
چنانچه به جای مطالعه کل اعضای جامعه، بخشی از آن با استفاده از فنون نمونهگیری انتخاب شده، و مورد مطالعه قرار گیرد و بخواهیم نتایج حاصل از آن را به کل جامعه تعمیم دهیم از روشهایی استفاده میشود که موضوع آمار استنباطی (Inferential statistics) است. آن چه که مهم است این است که در گذر از آمار توصیفی به آمار استنباطی یا به عبارت دیگر از نمونه به جامعه بحث و نقش احتمال شروع میشود. در واقع احتمال، پل رابط بین آمار توصیفی و استنباطی به حساب میآید.
توزیع جامعه
توزیع جامعه یا توزیع جمعیت (به انگلیسی: Population distribution) در آمار به توزیع تمام مشاهدات امکان پذیر را گویند.
چولگی
در آمار و نظریه احتمالات چولگی نشان دهنده میزان عدم تقارن توزیع احتمالی است. اگر دادهها نسبت به میانگین متقارن باشند، چولگی برابر صفر خواهد بود.
تعریف
چولگی برابر با گشتاور سوم نرمال شده است. چولگی در حقیقت معیاری از وجود یا عدم تقارن تابع توزیع می باشد. برای یک توزیع کاملاً متقارن چولگی صفر و برای یک توزیع نامتقارن با کشیدگی به سمت مقادیر بالاتر چولگی مثبت و برای توزیع نامتقارن با کشیدگی به سمت مقادیر کوچکتر مقدار چولگی منفی است.
دادهکاوی
داده کاوی، پایگاهها و مجموعههای حجیم دادهها را در پی کشف واستخراج دانش، مورد تحلیل و کند و کاوهای ماشینی (و نیمهماشینی) قرار میدهد. این گونه مطالعات و کاوشها را به واقع میتوان همان امتداد و استمرار دانش کهن و همه جا گیر آمار دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینهها و کاربردها، و نیز ابعاد و اندازههای دادههای امروزین است که شیوههای ماشینی مربوط به یادگیری، مدلسازی، و آموزش را طلب مینماید.
در سال 1960 آماردانان اصطلاح "Data Fishing" یا "Data Dredging"به معنای "صید داده" را جهت کشف هر گونه ارتباط در حجم بسیار بزرگی از داده ها بدون در نظر گرفتن هیچگونه پیش فرضی بکار بردند. بعد از سی سال و با انباشته شدن داده ها در پایگاه های داده یا Database اصطلاح "Data Mining" یا داده کاوی در حدود سال 1990 رواج بیشتری یافت. اصطلاحات دیگری نظیر "Data Archaeology"یا "Information Harvesting" یا "Information Discovery" یا"Knowledge Extraction" نیز بکار رفته اند.
اصطلاح Data Mining همان طور که از ترجمه آن به معنی داده کاوی مشخص میشود به مفهوم استخراج اطلاعات نهان و یا الگوها وروابط مشخص در حجم زیادی از دادهها در یک یا چند بانک اطلاعاتی بزرگ است.
مقدمه
بسیاری از شرکتها و موسسات دارای حجم انبوهی از اطلاعات هستند. تکنیکهای دادهکاوی به طور تاریخی به گونهای گسترش یافتهاند که به سادگی میتوان آنها را بر ابزارهای نرمافزاری و ... امروزی تطبیق داده و از اطلاعات جمع آوری شده بهترین بهره را برد.
در صورتی که سیستمهای Data Mining بر روی سکوهای Client/Server قوی نصب شده باشد و دسترسی به بانکهای اطلاعاتی بزرگ فراهم باشد، میتوان به سوالاتی از قبیل :کدامیک از مشتریان ممکن است خریدار کدامیک از محصولات آینده شرکت باشند، چرا، در کدام مقطع زمانی و بسیاری از موارد مشابه پاسخ داد.
ویژگیها
یکی از ویژگیهای کلیدی در بسیاری از ابتکارات مربوط به تامین امنیت ملی، داده کاوی است. داده کاوی که به عنوان ابزاری برای کشف جرایم، ارزیابی میزان ریسک و فروش محصولات به کار میرود، در بر گیرنده ابزارهای تجزیه و تحلیل اطلاعات به منظور کشف الگوهای معتبر و ناشناخته در بین انبوهی از داده هاست. داده کاوی غالباً در زمینه تامین امنیت ملی به منزله ابزاری برای شناسایی فعالیتهای افراد خرابکار شامل جابه جایی پول و ارتباطات بین آنها و همچنین شناسایی و ردگیری خود آنها با برسی سوابق مربوط به مهاجرت و مسافرت هاست. داده کاوی پیشرفت قابل ملاحظهای را در نوع ابزارهای تحلیل موجود نشان میدهد اما محدودیتهایی نیز دارد. یکی از این محدودیتها این است که با وجود اینکه به آشکارسازی الگوها و روابط کمک میکند اما اطلاعاتی را در باره ارزش یا میزان اهمیت آنها به دست نمیدهد. دومین محدودیت آن این است که با وجود توانایی شناسایی روابط بین رفتارها و یا متغیرها لزوماً قادر به کشف روابط علت و معلولی نیست. موفقیت داده کاوی در گرو بهره گیری از کارشناسان فنی و تحلیل گران کار آزمودهای است که از توانایی کافی برای طبقه بندی تحلیلها و تغییر آنها برخوردار هستند. بهره برداری از داده کاوی در دو بخش دولتی و خصوصی رو به گسترش است. صنایعی چون بانکداری، بیمه، بهداشت و بازار یابی آنرا عموماً برای کاهش هزینهها، ارتقاء کیفی پژوهشها و بالاتر بردن میزان فروش به کار میبرند. کاربرد اصلی داده کاوی در بخش دولتی به عنوان ابزاری برای تشخیص جرایم بودهاست اما امروزه دامنه بهره برداری از آن گسترش روزافزونی یافته و سنجش و بهینه سازی برنامهها را نیز در بر میگیرد. بررسی برخی از برنامههای کاربردی مربوط به داده کاوی که برای تامین امنیت ملی به کار میروند، نشان دهنده رشد قابل ملاحظهای در رابطه با کمیت و دامنه دادههایی است که باید تجزیه و تحلیل شوند. تواناییهای فنی در داده کاوی از اهمیت ویژهای برخوردار اند اما عوامل دیگری نیز مانند چگونگی پیاده سازی و نظارت ممکن است نتیجه کار را تحت تأثیر قرار دهند. یکی از این عوامل کیفیت داده هاست که بر میزان دقت و کامل بودن آن دلالت دارد. عامل دوم میزان سازگاری نرمافزار داده کاوی با بانکهای اطلاعاتی است که از سوی شرکتهای متفاوتی عرضه میشوند عامل سومی که باید به آن اشاره کرد به بیراهه رفتن داده کاوی و بهره برداری از دادهها به منظوری است که در ابتدا با این نیت گرد آوری نشدهاند. حفظ حریم خصوصی افراد عامل دیگری است که باید به آن توجه داشت. اصولاً به پرسشهای زیر در زمینه داده کاوی باید پاسخ داده شود:
سازمانهای دولتی تا چه حدی مجاز به بهره برداری از دادهها هستند؟
آیا از دادهها در چارچوبی غیر متعارف بهره برداری میشود؟
کدام قوانین حفظ حریم خصوصی ممکن است به داده کاوی مربوط شوند؟
کاوش در دادهها بخشی بزرگ از سامانههای هوشمند است. سامانههای هوشمند زیر شاخهایست بزرگ و پرکاربرد از زمینه علمی جدید و پهناور یادگیری ماشینی که خود زمینهایست در هوش مصنوعی.
فرایند گروه گروه کردن مجموعهای از اشیاء فیزیکی یا مجرد به صورت طبقههایی از اشیاء مشابه هم را خوشهبندی مینامیم.
با توجه به اندازههای گوناگون (و در اغلب کاربردها بسیار بزرگ و پیچیده) مجموعههای دادهها مقیاسپذیری الگوریتمهای به کار رفته معیاری مهم در مفاهیم مربوط به کاوش در دادهها است.
کاوشهای ماشینی در متون حالتی خاص از زمینهٔ عمومیتر کاوش در دادهها بوده، و به آن دسته از کاوشها اطلاق میشود که در آنها دادههای مورد مطالعه از جنس متون نوشته شده به زبانهای طبیعی انسانی باشد.
چیستی
داده کاوی به بهره گیری از ابزارهای تجزیه و تحلیل دادهها به منظور کشف الگوها و روابط معتبری که تا کنون ناشناخته بودهاند اطلاق میشود. این ابزارها ممکن است مدلهای آماری، الگوریتمهای ریاضی و روشهای یاد گیرنده (Machine Laming Method) باشند که کار این خود را به صورت خودکار و بر اساس تجربهای که از طریق شبکههای عصبی (Neural Networks) یا درختهای تصمیم گیری (Decision Trees) به دست میآورند بهبود میبخشد. داده کاوی منحصر به گردآوری و مدیریت دادهها نبوده و تجزیه و تحلیل اطلاعات و پیش بینی را نیز شامل میشود برنامههای کاربردی که با بررسی فایلهای متن یا چند رسانهای به کاوش دادهها می پردازند پارامترهای گوناگونی را در نظر میگیرد که عبارت اند از:
قواعد انجمنی (Association): الگوهایی که بر اساس آن یک رویداد به دیگری مربوط میشود مثلاً خرید قلم به خرید کاغذ.
ترتیب (Sequence): الگویی که به تجزیه و تحلیل توالی رویدادها پرداخته و مشخص میکند کدام رویداد، رویدادهای دیگری را در پی دارد مثلاً تولد یک نوزاد و خرید پوشک.
پیش بینی(Prediction): در پیش بینی هدف پیش بینی یک متغیر پیوسته می باشد. مانند پیش بینی نرخ ارز یا هزینه های درمانی.
رده بندی یا طبقه بندی (Classification): فرآیندی برای پیدا کردن مدلی است که رده های موجود در دادهها را تعریف می نماید و متمایز می کند، با این هدف که بتوان از این مدل برای پیش بینی رده رکوردهایی که برچسب رده آنها(متغیر هدف) ناشناخته می باشد، استفاده نمود. در حقیقت در رده بندی بر خلاف پیش بینی، هدف پیش بینی مقدار یک متغیر گسسته است. روش های مورد استفاده در پیش بینی و رده بندی عموما یکسان هستند.
خوشه بندی(Clustering): گروه بندی مجموعه ای از اعضاء، رکوردها یا اشیاء به نحوی که اعضای موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را به اعضای خوشه های دیگر داشته باشند.
مصورسازی (visualization): مصورسازی داده ها یکی از قدرتمندترین و جذابترین روش های اکتشاف در داده ها می باشد.
برنامههای کاربردی که در زمینه تجزیه و تحلیل اطلاعات به کار میروند از امکاناتی چون پرس و جوی ساخت یافته (Structured query) که در بسیاری از بانکهای اطلاعاتی یافت میشود و از ابزارهای تجزیه و تحلیل آماری برخوردارند اما برنامههای مربوط به داده کاوی در عین برخورداری از این قابلیتها از نظر نوع با آنها تفاوت دارند. بسیاری از ابزارهای ساده برای تجزیه و تحلیل دادهها روشی بر پایه راستی آزمایی (verifiction)را به کار میبرند که در آن فرضیهای بسط داده شده آنگاه دادهها برای تایید یا رد آن بررسی میشوند. به طور مثال ممکن است این نظریه مطرح شود که فردی که یک چکش خریده حتماً یک بسته میخ هم خواهد خرید. کارایی این روش به میزان خلاقیت کاربر برای ارایه فرضیههای متنوع و همچنین ساختار برنامه بکار رفته بستگی دارد. در مقابل در داده کاوی روشهایی برای کشف روابط بکار برده میشوند و به کمک الگوریتمهایی روابط چند بعدی بین دادهها تشخیص داده شده و آنهایی که یکتا (unique) یا رایج هستند شناسایی میشوند. به طور مثال در یک فروشگاه سختافزار ممکن است بین خرید ابزار توسط مشتریان با تملک خانه شخصی یا نوع خودرو، سن، شغل، میزان درآمد یا فاصله محل اقامت آنها با فروشگاه رابطهای برقرار شود.
در نتیجه قابلیتهای پیچیدهاش برای موفقیت در تمرین داده کاوی دو مقدمه مهم است یکی فرمول واضحی از مشکل که قابل حل باشد و دیگری دسترسی به داده متناسب. بعضی از ناظران داده کاوی را مرحلهای در روند کشف دانش در پایگاه دادهها میدانند (KDD). مراحل دیگری در روند KDD به صورت تساعدی شامل، پاکسازی داده، انتخاب داده انتقال داده، داده کاوی، الگوی ارزیابی، و عرضه دانش میباشد. بسیاری از پیشرفتها در تکنولوژی و فرایندهای تجاری بر رشد علاقهمندی به داده کاوی در بخشهای خصوصی و عمومی سهمی داشتهاند. بعضی از این تغییرات شامل:
رشد شبکههای کامپیوتری که در ارتباط برقرار کردن پایگاهها داده مورد استفاده قرار میگیرند.
توسعه افزایش تکنیکهایی بر پایه جستجو مثل شبکههای عصبی و الگوریتمهای پیشرفته.
گسترش مدل محاسبه کلاینت سروری که به کاربران اجازه دسترسی به منابع دادههای متمرکز شده را از روی دسک تاپ میدهد.
و افزایش توانایی به تلفیق داده از منابع غیر متناجس به یک منبع قابل جستجو میباشد.
علاوه بر پیشرفت ابزارهای مدیریت داده، افزایش قابلیت دسترسی به داده و کاهش نرخ نگهداری داده نقش ایفا میکند. در طول چند سال گذشته افزایش سریع جمع آوری و نگه داری حجم اطلاعات وجود داشتهاست. با پیشنهادهای برخی از ناظران مبنی بر آنکه کمیت دادههای دنیا به طور تخمینی هر ساله دوبرابر میگردد. در همین زمان هزینه ذخیره سازی دادهها بطور قابل توجهی از دلار برای هر مگابایت به پنی برای مگابایت کاهش پیدا کردهاست. مطابقا قدرت محاسبهها در هر ۱۸ – ۲۴ ماه به دوبرابر ارتقاء پیدا کردهاست این در حالی است که هزینه قدرت محاسبه رو به کاهش است. داده کاو به طور معمول در دو حوزه خصوصی و عمومی افزایش پیدا کردهاست. سازمانها داده کاوی را به عنوان ابزاری برای بازدید اطلاعات مشتریان کاهش تقلب و اتلاف و کمک به تحقیقات پزشکی استفاده میکنند. با اینهمه ازدیاد داده کاوی به طبع بعضی از پیاده سازی و پیامد اشتباه را هم دارد.اینها شامل نگرانیهایی در مورد کیفیت دادهای که تحلیل میگردد، توانایی کار گروهی پایگاههای داده و نرمافزارها بین ارگانها و تخطیهای بالقوه به حریم شخصی میباشد.همچنین ملاحظاتی در مورد محدودیتهایی در داده کاوی در ارگانها که کارشان تاثیر بر امنیت دارد، نادیده گرفته میشود.
محدودیتهای داده کاوی
در حالیکه محصولات داده کاوی ابزارهای قدرتمندی میباشند، اما در نوع کاربردی کافی نیستند.برای کسب موفقیت، داده کاوی نیازمند تحلیل گران حرفهای و متخصصان ماهری میباشد که بتوانند ترکیب خروجی بوجود آمده را تحلیل و تفسیر نمایند.در نتیجه محدودیتهای داده کاوی مربوط به داده اولیه یا افراد است تا اینکه مربوط به تکنولوژی باشد.
اگرچه داده کاوی به الگوهای مشخص و روابط آنها کمک میکند، اما برای کاربر اهمیت و ارزش این الگوها را بیان نمیکند.تصمیماتی از این قبیل بر عهده خود کاربر است.برای نمونه در ارزیابی صحت داده کاوی، برنامه کاربردی در تشخیص مظنونان تروریست طراحی شده که ممکن است این مدل به کمک اطلاعات موجود در مورد تروریستهای شناخته شده، آزمایش شود.با اینهمه در حالیکه ممکن است اطلاعات شخص بطور معین دوباره تصدیق گردد، که این مورد به این منظور نیست که برنامه مظنونی را که رفتارش به طور خاص از مدل اصلی منحرف شده را تشخیص بدهد.
تشخیص رابطه بین رفتارها و یا متغیرها یکی دیگر از محدودیتهای داده کاوی میباشد که لزوماًروابط اتفاقی را تشخیص نمیدهد.برای مثال برنامههای کاربردی ممکن است الگوهای رفتاری را مشخص کند، مثل تمایل به خرید بلیط هواپیما درست قبل از حرکت که این موضوع به مشخصات درآمد، سطح تحصیلی و استفاده از اینترنت بستگی دارد.در حقیقت رفتارهای شخصی شامل شغل(نیاز به سفر در زمانی محدود)وضع خانوادگی(نیاز به مراقبت پزشکی برای مریض)یا تفریح (سود بردن از تخفیف دقایق پایانی برای دیدن مکانهای جدید) ممکن است بر روی متغیرهای اضافه تاثیر بگذارد.
ابزارهای داده کاوی
معروفترین ابزارهای دادهکاوی به ترتیب پرطرفدار بودن
Clementine که نسخه ۱۳ ان با نام SPSS Modeler نامیده میشود.
رپیدماینر
نرمافزار وکا
نرمافزار
برنامه های کاربردی و نرمافزار های داده کاوی متن-باز رایگان
Carrot2: پلتفرمی برای خوشه بندی متن و نتایج جستجو
Chemicalize.org: یک کاوشگر ساختمان شیمیایی و موتور جستجوی وب
ELKI: یک پروژه تحقیقاتی دانشگاهی با تحلیل خوشه ای پیشرفته و روش های تشخیص داده های خارج از محدوده که به زبان جاوا نوشته شده است.
GATE: یک پردازشگر زبان بومی و ابزار مهندسی زبان.
برنامه های کاربردی و نرمافزار های داده کاوی تجاری
Angoss KnowledgeSTUDIO: ابزار داده کاوی تولید شده توسط Angoss.
BIRT Analytics: ابزار داده کاوی بصری و تحلیل پیش بینی گر تولید شده توسط Actuate Corporation.
Clarabridge: راه حل تحلیلگر کلاس متن.
(E-NI(e-mining, e-monitor: ابزار داده کاوی مبتنی بر الگوهای موقتی.
IBM SPSS Modeler: نرمافزار داده کاوی تولید شده توسط IBM
Microsoft Analysis Services: نرمافزار داده کاوی تولید شده توسط مایکروسافت
Oracle Data Mining: نرمافزار داده کاوی تولید شده توسط اوراکل (کمیک)
بررسی اجمالی بازار نرمافزار های داده کاوی
تا کنون چندین محقق و سازمان بررسی هایی را بر روی ابزار های داده کاوی و راهنماییهایی برای داده کاو ها تهیه دیده اند. این بررسی ها بعضی از نقاط ضعف و قوت بسته های نرمافزاری را مشخص می کنند. همچنین خلاصه ای را از رفتار ها، اولویت ها و دید های داده کاوها تهیه کرده اند
درجه آزادی (آمار)
درجه آزادی یکی از مفاهیم بنیادین در آمار است. درک بسیاری از مفاهیم مطرح در آمار وابسته به درک مناسبی از این مفهوم است. بر اساس زمینهٔ کاربرد و شیوهٔ نگرش میتوان تعاریف مختلفی برای آن ارائه نمود که همه یک مفهومند:
در نظریهٔ برآورد:
تعداد مقادیری که یک آماره امکان تغییر دارد
تعداد مشاهدات مستقل منهای تعداد پارامترهای برآورد شده.
بطور معادل: تعداد مشاهدات مستقل منهای تعداد روابط معلوم میان مشاهدات
در نظریه آزمون:
بعد فضای مجهول (مدل کامل) منهای بعد فضای مفروض (مدل مقید)
در جبر خطی:
رتبهٔ یک فرم درجه دوم
بطور معادل: تعداد ابعاد یک زیر فضا که یک بردار میتواند آزادانه گردش کند (مربع طول بردار یک فرم درجه دوم است)
درک شهودی
مثال: یک عدد ثابت امکان تغییر ندارد پس درجه آزادی آن برابر صفر است.
یک نقطه در صفحه یک رابطه میان دو متغیر در فضای دو بعدی است. با این نقطه نمیتوان میزان همبستگی خطی دو متغیر را با برآورد خط رگرسیون تخمین زد. چون بینهایت خط از این نقطه گذراست. (تصویر مقابل) در این مثال درجه آزادی صفر است (تعداد مشاهدات مستقل - تعداد روابط معلوم میان مشاهدات = 0) اگر خطی را بعنوان خط رگرسیونی در نظر بگیریم، این مدل نه قابل رد و نه قابل قبول است. بنابراین تعداد نمونه های قابل استفاده برای این مدل صفر است.
برای رسم خط رگرسیون حداقل دو نقطه لازم است. با دو نقطه یک درجه آزادی وجود دارد. از دو نقطه فقط یک خط گذر میکند و این خط تنها برآورد ممکن است. با اینکه دقت برآورد 100 درصد است اما این دقت کاذب به علت کم بودن درجات آزادی و اطلاعات قابل استفاده است. نمونه های زیادی از تحقیقات با رسیدن به دقتی بالا تصور میکنند که مدل بدست آمده مناسب است . در حالی که درجات آزادی کم باعث این اشتباه شده است.
مثال: اگر دو مشاهده داشته باشیم، برای برآورد میانگین دو مشاهدهء مستقل داریم، اما برای برآورد واریانس تنها یک مشاهدهء مستقل وجود دارد. زیرا هر دو مشاهده دارای یک فاصله از میانگین هستند.
دیدگاه فلسفی
برای درک بهتر این مفهوم میتوان درجهء آزادی را یک معادل برای درجهء ابطال پذیری از دیدگاه فلاسفه ای مانند کارل پوپر دانست. اگر در مسئله ای درجات آزادی کم
باشد معادل است با اینکه ابطال پذیری آن مسئله کم است. یعنی با هر مشاهده ای تایید میشود و قابل ابطال نیست.
سازمان آماری
سازمان آماری سازمانی خدماتی است که وظیفهٔ تهیهٔ آمار را بر عهده دارد. دلیل وجود، رشد و مشارکت مشهود آنها در امور مربوط به دولت و جامعةخود، از توانایی آنها در تهیة اطلاعاتی برای حل مسائل مهم ریشه میگیرد. ولی اولویتها میتوانند سریعتر از توانایی سازمان برای تعدیل تلاش تولیدی خود تغییر کنند. به این دلیل، مهم است که مسئولان ارشد آن دارای شم قوی و روابطی باشند که بتوانند مشکلات جدی را شناسایی کرده و آنها را از آنچه ممکن است چیزی جز مسایل گذرا نباشند متمایز کنند.
شاخصهای پراکندگی
سنجشهای پراکندگی (به انگلیسی: Measures of Variability) به اعدادی گویند که پراکندگی مجموعهای از مشاهدات یا دادههای اندازه گیری شدهای را خلاصه و توصیف میکنند.
دامنه، واریانس، و انحراف معیار، هر سه نمونههایی از سنجشهای پراکندگی هستند.
ضریب تغییرات
در نظریه احتمال و آمار ضریب تغییرات (به انگلیسی: coefficient of variation، مخفف:CV) یک معیار بهنجار است که برای اندازهگیری توزیع دادههای آماری به کار میرود.
به عبارت دیگر ضریب تغییرات، میزان پراکندگی به ازای یک واحد از میانگین را بیان میکند. این مقدار زمانی تعریف شده است که میانگین صفر نباشد.
این مقدار بیبعد است به همین دلیل مناسب برای مقایسه دادههای آماری است که واحدهای مختلفی دارند.
ضریب تغییرات تنها قابل کاربرد برای مقیاسهای نسبی است و نمیتوان ار آن برای سنجش مقادیری که میتوانند مقدار منفی بگیرند استفاده کرد یا به بیان بهتر نمیتوان از آن برای سنجش مقادیر فاصلهای بهره برد. مثلاً اگر درجه حرارت را با مقیاس فارنهایت در نظر بگیریم برای آن نمیتوان از ضریب تغییر اسفاده کرد و باید از مقیاس کلوین که همیشه مقداری مثبت است استفاده کرد.
متغیر پنهان
متغیرهای پنهان(در مقابل متغیرهای مشاهده شده)در آمار، متغیرهای هستند که بصورت مسقیم قابل مشاهده نیستند اما از میان متغیرهای دیگر که قابل مشاهده هستند توسط یک الگوی ریاضی استنباط میشوند. آنها همچنین بعضی وقتها تحت عنوان متغیرهای پنهان، پارامترها ی مدل، متغیرهای فرضی یا ساختارهای فرضی شناخته میشوند.. استفاده متغیرهای پنهان در علوم اجتماعی متداول است، اقتصاد، پزشکی و تا حدی روبوتیک اما تعریف دقیق یک متغیر پنهان در این رشتهها کمی متفاوت است. مثالهای از متغیرهای پنهان در حوزه اقتصاد عبارتند از کیفیت زندگی، اطمینان کار، روحیه، خوشحالی و اصول محافظهکاری: اینها متغیرها هستند که مستقیماً نمیتوان آنها را سنجید. با این وجود یک مدل اقتصادی را میتوان از پیوند این متغیرهای پنهان با متغیرهای مشاهده شده (از قبیل تولید ناخالص داخلی) بدست آورد و مقادیر متغیرهای پنهان را از متغیرهای مشاهده شده محاسبه و استنباط نمود.
متغیر تصادفی
در آمار و احتمال متغیر تصادفی متغیری است که مقدار آن از اندازهگیری برخی از انواع فرآیندهای تصادفی بدست میآید. بطور رسمیتر، متغیر تصادفی تابعی است از فضای نمونه به اعداد حقیقی. بطور مستقیم متغیر تصادفی توصیف عددی خروجی یک آزمایش است (مثل برآمدهای ممکن از پرتاب دو تاس (۱و۱) و (۱و۲) و غیره).
متغیرهای تصادفی به دو نوع گسسته (متغیر تصادفی که ممکن است تعداد محدود یا توالی نامحدودی از مقادیر را بگیرد) و پیوسته (متغیری که ممکن است هر مقدار عددی در یک یا چند بازه را بگیرد) طبقهبندی میشوند. مقادیر ممکن یک متغیر تصادفی میتواند نشاندهندهٔ برآمدهای آزمایشی که هنوز انجام نشده یا مقادیر بالقوهٔ یک کمیت که مقدارهای موجود آن نامطمئن هستند (مثلا درنتیجه اطلاعات ناقص یا اندازهگیری نادقیق) باشد. یک متغیر تصادفی میتواند بعنوان یک کمیت که مقدارش ثابت نیست و مقادیر مختلفی را میتواند بگیرد در نظر گرفته شود و توزیع احتمال برای توصیف احتمال اتفاق افتادن آن مقادیر استفاده میشود.
متغیرهای تصادفی معمولاً با اعداد حقیقی مقداردهی میشوند؛ ولی میتوان انواع دلخواهی مانند مقدارهای بولی، اعداد مختلط، بردارها، ماتریسها، دنبالهها، درختها، مجموعهها، شکلها، منیوفیلدها، توابع و فرآیندها را درنظر گرفت. عبارت المان تصادفی همه این نوع مفاهیم را دربرمی گیرد.
متغیرهای تصادفی که با اعداد حقیقی مقداردهی میشوند، در علوم برای پیشبینی براساس دادههای بدست آمده از آزمایشهای علمی استفاده میشوند. علاوه بر کاربردهای علمی، متغیرهای تصادفی برای آنالیز بازیهای قمار و پدیدههای تصادفی بوجود آمدند. در چنین مواردی تابعی که خروجی را به یک عدد حقیقی مینگارد معمولا یک تابع همانی یا بطور مشابه یک تابع بدیهی است و بطور صریح توصیف نشده است. با این وجود در بسیاری از موارد بهتر است متغیر تصادفی را بصورت توابعی از سایر متغیرهای تصادفی درنظر بگیریم که دراینصورت تابع نگاشت استفاده شده در تعریف یک متغیر تصادفی مهم میشود. بعنوان مثال، رادیکال یک متغیر تصادفی با توزیع استاندارد (نرمال) خود یک متغیر تصادفی با توزیع کی دو است. شهود این مطلب بدین صورت است که تصور کنید اعداد تصادفی بسیاری با توزیع نرمال تولید کرده و از هرکدام رادیکال بگیریم و سپس هیستوگرام دادههای بدست آمده را بکشیم در اینصورت اگر دادهها به تعداد کافی باشند، نمودار هیستوگرام تابع چگالی توزیع کی دو را با یک درجه آزادی تقریب خواهد زد.
نامهای دیگر
در برخی از کتابهای قدیمیتر به جای «متغیر تصادفی»، اصطلاحهای «متغیر شانسی» و «متغیر استوکاستیکی» هم به کار رفته است.
انواع
متغیر تصادفی گسسته
متغیر تصادفی پیوسته
با توجه به وضع شمارایی فضای نمونهای S، متغیر میتواند گسسته یا پیوسته باشد. اگر S متناهی یا نامتناهی شمارا باشد متغیر تصادفی X گسسته و اگر ناشمارا باشد X پیوسته خواهد بود.
یک توزیع همچنین می تواند از نوع مختلط (mixed) باشد به این صورت که بخشی از آن مقادیر خاصی را بگیرد و بخش دیگر آن مقادیر روی یک بازه را بگیرد.
مقدار موثر
در ریاضیات، جذر متوسط مربع (به انگلیسی: root mean square یا quadratic mean) که با نام مقدار RMS و مقدار مؤثر (به انگلیسی: effective value) نیز شناخته میشود، معیاری آماری از اندازه کمیت متغیر است.
آمار پارامتری به مجموعه روشهای آماریای گفته میشود که مدلای پارامتری برای پدیدهٔ احتمالی مورد مطالعه فرض میشود و همهٔ استنتاجهای آماری از آن پس بر اساس آن مدل انجام میشود.

به عنوان مثال فرض میشود که توزیع نمرههای یک امتحان از توزیع نرمال پیروی میکند. در نتیجه برای مشخصشدن توزیع احتمال، کافی است میانگین و واریانس توزیع را از روی دادههای تجربی (نمرههای دانشآموزان) به دست بیاوریم. حال برای پاسخگفتن به سوالهایی چون «درصد دانشآموزانی که نمرهای بین ۱۰ تا ۱۵ آوردهاند» از تابع توزیع به دست آمده استفاده میکنیم (البته بدیهی است که روشهای سادهتری نیز برای چنین کاری وجود دارد).
نقطهٔ ضعف این شیوهٔ تحلیل آماری این است که در صورتی که مدل فرضشده با واقعیت تطبیق نداشته باشد، نتیجهگیریها صحیح نخواهد بود.
آماره
آماره در آمار به عددی گویند که یک توزیع نمونهبرداری را خلاصهسازی یا توصیف میکند.
تابع U=g(X۱, X۲, …, Xn) از نمونهٔ تصادفی X۱, X۲, …, Xn را که در آن پارامتر مجهولی وجود نداشته باشد یک آماره میگویند. در این تعریف U یک متغیر تصادفی است که توزیع آن ممکن است به پارامتر بستگی نداشته باشد؛ اما تنها آمارههایی برای برآورد کردن مفید هستند که توزیعشان به پارامتر مجهول بستگی داشته باشد و اطلاعاتی در مورد این پارامتر به ما بدهند.
آنتروپی آماری
انتروپی آماری یک کمیت ترمودینامیکی است که در شیمیفیزیک کاربردهای فراوان دارد.
استنباط آماری
چنانچه به جای مطالعه کل اعضای جامعه، بخشی از آن با استفاده از فنون نمونهگیری انتخاب شده، و مورد مطالعه قرار گیرد و بخواهیم نتایج حاصل از آن را به کل جامعه تعمیم دهیم از روشهایی استفاده میشود که موضوع آمار استنباطی (Inferential statistics) است. آن چه که مهم است این است که در گذر از آمار توصیفی به آمار استنباطی یا به عبارت دیگر از نمونه به جامعه بحث و نقش احتمال شروع میشود. در واقع احتمال، پل رابط بین آمار توصیفی و استنباطی به حساب میآید.
توزیع جامعه
توزیع جامعه یا توزیع جمعیت (به انگلیسی: Population distribution) در آمار به توزیع تمام مشاهدات امکان پذیر را گویند.
چولگی
در آمار و نظریه احتمالات چولگی نشان دهنده میزان عدم تقارن توزیع احتمالی است. اگر دادهها نسبت به میانگین متقارن باشند، چولگی برابر صفر خواهد بود.
تعریف
چولگی برابر با گشتاور سوم نرمال شده است. چولگی در حقیقت معیاری از وجود یا عدم تقارن تابع توزیع می باشد. برای یک توزیع کاملاً متقارن چولگی صفر و برای یک توزیع نامتقارن با کشیدگی به سمت مقادیر بالاتر چولگی مثبت و برای توزیع نامتقارن با کشیدگی به سمت مقادیر کوچکتر مقدار چولگی منفی است.
دادهکاوی
داده کاوی، پایگاهها و مجموعههای حجیم دادهها را در پی کشف واستخراج دانش، مورد تحلیل و کند و کاوهای ماشینی (و نیمهماشینی) قرار میدهد. این گونه مطالعات و کاوشها را به واقع میتوان همان امتداد و استمرار دانش کهن و همه جا گیر آمار دانست. تفاوت عمده در مقیاس، وسعت و گوناگونی زمینهها و کاربردها، و نیز ابعاد و اندازههای دادههای امروزین است که شیوههای ماشینی مربوط به یادگیری، مدلسازی، و آموزش را طلب مینماید.
در سال 1960 آماردانان اصطلاح "Data Fishing" یا "Data Dredging"به معنای "صید داده" را جهت کشف هر گونه ارتباط در حجم بسیار بزرگی از داده ها بدون در نظر گرفتن هیچگونه پیش فرضی بکار بردند. بعد از سی سال و با انباشته شدن داده ها در پایگاه های داده یا Database اصطلاح "Data Mining" یا داده کاوی در حدود سال 1990 رواج بیشتری یافت. اصطلاحات دیگری نظیر "Data Archaeology"یا "Information Harvesting" یا "Information Discovery" یا"Knowledge Extraction" نیز بکار رفته اند.
اصطلاح Data Mining همان طور که از ترجمه آن به معنی داده کاوی مشخص میشود به مفهوم استخراج اطلاعات نهان و یا الگوها وروابط مشخص در حجم زیادی از دادهها در یک یا چند بانک اطلاعاتی بزرگ است.
مقدمه
بسیاری از شرکتها و موسسات دارای حجم انبوهی از اطلاعات هستند. تکنیکهای دادهکاوی به طور تاریخی به گونهای گسترش یافتهاند که به سادگی میتوان آنها را بر ابزارهای نرمافزاری و ... امروزی تطبیق داده و از اطلاعات جمع آوری شده بهترین بهره را برد.
در صورتی که سیستمهای Data Mining بر روی سکوهای Client/Server قوی نصب شده باشد و دسترسی به بانکهای اطلاعاتی بزرگ فراهم باشد، میتوان به سوالاتی از قبیل :کدامیک از مشتریان ممکن است خریدار کدامیک از محصولات آینده شرکت باشند، چرا، در کدام مقطع زمانی و بسیاری از موارد مشابه پاسخ داد.
ویژگیها
یکی از ویژگیهای کلیدی در بسیاری از ابتکارات مربوط به تامین امنیت ملی، داده کاوی است. داده کاوی که به عنوان ابزاری برای کشف جرایم، ارزیابی میزان ریسک و فروش محصولات به کار میرود، در بر گیرنده ابزارهای تجزیه و تحلیل اطلاعات به منظور کشف الگوهای معتبر و ناشناخته در بین انبوهی از داده هاست. داده کاوی غالباً در زمینه تامین امنیت ملی به منزله ابزاری برای شناسایی فعالیتهای افراد خرابکار شامل جابه جایی پول و ارتباطات بین آنها و همچنین شناسایی و ردگیری خود آنها با برسی سوابق مربوط به مهاجرت و مسافرت هاست. داده کاوی پیشرفت قابل ملاحظهای را در نوع ابزارهای تحلیل موجود نشان میدهد اما محدودیتهایی نیز دارد. یکی از این محدودیتها این است که با وجود اینکه به آشکارسازی الگوها و روابط کمک میکند اما اطلاعاتی را در باره ارزش یا میزان اهمیت آنها به دست نمیدهد. دومین محدودیت آن این است که با وجود توانایی شناسایی روابط بین رفتارها و یا متغیرها لزوماً قادر به کشف روابط علت و معلولی نیست. موفقیت داده کاوی در گرو بهره گیری از کارشناسان فنی و تحلیل گران کار آزمودهای است که از توانایی کافی برای طبقه بندی تحلیلها و تغییر آنها برخوردار هستند. بهره برداری از داده کاوی در دو بخش دولتی و خصوصی رو به گسترش است. صنایعی چون بانکداری، بیمه، بهداشت و بازار یابی آنرا عموماً برای کاهش هزینهها، ارتقاء کیفی پژوهشها و بالاتر بردن میزان فروش به کار میبرند. کاربرد اصلی داده کاوی در بخش دولتی به عنوان ابزاری برای تشخیص جرایم بودهاست اما امروزه دامنه بهره برداری از آن گسترش روزافزونی یافته و سنجش و بهینه سازی برنامهها را نیز در بر میگیرد. بررسی برخی از برنامههای کاربردی مربوط به داده کاوی که برای تامین امنیت ملی به کار میروند، نشان دهنده رشد قابل ملاحظهای در رابطه با کمیت و دامنه دادههایی است که باید تجزیه و تحلیل شوند. تواناییهای فنی در داده کاوی از اهمیت ویژهای برخوردار اند اما عوامل دیگری نیز مانند چگونگی پیاده سازی و نظارت ممکن است نتیجه کار را تحت تأثیر قرار دهند. یکی از این عوامل کیفیت داده هاست که بر میزان دقت و کامل بودن آن دلالت دارد. عامل دوم میزان سازگاری نرمافزار داده کاوی با بانکهای اطلاعاتی است که از سوی شرکتهای متفاوتی عرضه میشوند عامل سومی که باید به آن اشاره کرد به بیراهه رفتن داده کاوی و بهره برداری از دادهها به منظوری است که در ابتدا با این نیت گرد آوری نشدهاند. حفظ حریم خصوصی افراد عامل دیگری است که باید به آن توجه داشت. اصولاً به پرسشهای زیر در زمینه داده کاوی باید پاسخ داده شود:
سازمانهای دولتی تا چه حدی مجاز به بهره برداری از دادهها هستند؟
آیا از دادهها در چارچوبی غیر متعارف بهره برداری میشود؟
کدام قوانین حفظ حریم خصوصی ممکن است به داده کاوی مربوط شوند؟
کاوش در دادهها بخشی بزرگ از سامانههای هوشمند است. سامانههای هوشمند زیر شاخهایست بزرگ و پرکاربرد از زمینه علمی جدید و پهناور یادگیری ماشینی که خود زمینهایست در هوش مصنوعی.
فرایند گروه گروه کردن مجموعهای از اشیاء فیزیکی یا مجرد به صورت طبقههایی از اشیاء مشابه هم را خوشهبندی مینامیم.
با توجه به اندازههای گوناگون (و در اغلب کاربردها بسیار بزرگ و پیچیده) مجموعههای دادهها مقیاسپذیری الگوریتمهای به کار رفته معیاری مهم در مفاهیم مربوط به کاوش در دادهها است.
کاوشهای ماشینی در متون حالتی خاص از زمینهٔ عمومیتر کاوش در دادهها بوده، و به آن دسته از کاوشها اطلاق میشود که در آنها دادههای مورد مطالعه از جنس متون نوشته شده به زبانهای طبیعی انسانی باشد.
چیستی
داده کاوی به بهره گیری از ابزارهای تجزیه و تحلیل دادهها به منظور کشف الگوها و روابط معتبری که تا کنون ناشناخته بودهاند اطلاق میشود. این ابزارها ممکن است مدلهای آماری، الگوریتمهای ریاضی و روشهای یاد گیرنده (Machine Laming Method) باشند که کار این خود را به صورت خودکار و بر اساس تجربهای که از طریق شبکههای عصبی (Neural Networks) یا درختهای تصمیم گیری (Decision Trees) به دست میآورند بهبود میبخشد. داده کاوی منحصر به گردآوری و مدیریت دادهها نبوده و تجزیه و تحلیل اطلاعات و پیش بینی را نیز شامل میشود برنامههای کاربردی که با بررسی فایلهای متن یا چند رسانهای به کاوش دادهها می پردازند پارامترهای گوناگونی را در نظر میگیرد که عبارت اند از:
قواعد انجمنی (Association): الگوهایی که بر اساس آن یک رویداد به دیگری مربوط میشود مثلاً خرید قلم به خرید کاغذ.
ترتیب (Sequence): الگویی که به تجزیه و تحلیل توالی رویدادها پرداخته و مشخص میکند کدام رویداد، رویدادهای دیگری را در پی دارد مثلاً تولد یک نوزاد و خرید پوشک.
پیش بینی(Prediction): در پیش بینی هدف پیش بینی یک متغیر پیوسته می باشد. مانند پیش بینی نرخ ارز یا هزینه های درمانی.
رده بندی یا طبقه بندی (Classification): فرآیندی برای پیدا کردن مدلی است که رده های موجود در دادهها را تعریف می نماید و متمایز می کند، با این هدف که بتوان از این مدل برای پیش بینی رده رکوردهایی که برچسب رده آنها(متغیر هدف) ناشناخته می باشد، استفاده نمود. در حقیقت در رده بندی بر خلاف پیش بینی، هدف پیش بینی مقدار یک متغیر گسسته است. روش های مورد استفاده در پیش بینی و رده بندی عموما یکسان هستند.
خوشه بندی(Clustering): گروه بندی مجموعه ای از اعضاء، رکوردها یا اشیاء به نحوی که اعضای موجود در یک خوشه بیشترین شباهت را به یکدیگر و کمترین شباهت را به اعضای خوشه های دیگر داشته باشند.
مصورسازی (visualization): مصورسازی داده ها یکی از قدرتمندترین و جذابترین روش های اکتشاف در داده ها می باشد.
برنامههای کاربردی که در زمینه تجزیه و تحلیل اطلاعات به کار میروند از امکاناتی چون پرس و جوی ساخت یافته (Structured query) که در بسیاری از بانکهای اطلاعاتی یافت میشود و از ابزارهای تجزیه و تحلیل آماری برخوردارند اما برنامههای مربوط به داده کاوی در عین برخورداری از این قابلیتها از نظر نوع با آنها تفاوت دارند. بسیاری از ابزارهای ساده برای تجزیه و تحلیل دادهها روشی بر پایه راستی آزمایی (verifiction)را به کار میبرند که در آن فرضیهای بسط داده شده آنگاه دادهها برای تایید یا رد آن بررسی میشوند. به طور مثال ممکن است این نظریه مطرح شود که فردی که یک چکش خریده حتماً یک بسته میخ هم خواهد خرید. کارایی این روش به میزان خلاقیت کاربر برای ارایه فرضیههای متنوع و همچنین ساختار برنامه بکار رفته بستگی دارد. در مقابل در داده کاوی روشهایی برای کشف روابط بکار برده میشوند و به کمک الگوریتمهایی روابط چند بعدی بین دادهها تشخیص داده شده و آنهایی که یکتا (unique) یا رایج هستند شناسایی میشوند. به طور مثال در یک فروشگاه سختافزار ممکن است بین خرید ابزار توسط مشتریان با تملک خانه شخصی یا نوع خودرو، سن، شغل، میزان درآمد یا فاصله محل اقامت آنها با فروشگاه رابطهای برقرار شود.
در نتیجه قابلیتهای پیچیدهاش برای موفقیت در تمرین داده کاوی دو مقدمه مهم است یکی فرمول واضحی از مشکل که قابل حل باشد و دیگری دسترسی به داده متناسب. بعضی از ناظران داده کاوی را مرحلهای در روند کشف دانش در پایگاه دادهها میدانند (KDD). مراحل دیگری در روند KDD به صورت تساعدی شامل، پاکسازی داده، انتخاب داده انتقال داده، داده کاوی، الگوی ارزیابی، و عرضه دانش میباشد. بسیاری از پیشرفتها در تکنولوژی و فرایندهای تجاری بر رشد علاقهمندی به داده کاوی در بخشهای خصوصی و عمومی سهمی داشتهاند. بعضی از این تغییرات شامل:
رشد شبکههای کامپیوتری که در ارتباط برقرار کردن پایگاهها داده مورد استفاده قرار میگیرند.
توسعه افزایش تکنیکهایی بر پایه جستجو مثل شبکههای عصبی و الگوریتمهای پیشرفته.
گسترش مدل محاسبه کلاینت سروری که به کاربران اجازه دسترسی به منابع دادههای متمرکز شده را از روی دسک تاپ میدهد.
و افزایش توانایی به تلفیق داده از منابع غیر متناجس به یک منبع قابل جستجو میباشد.
علاوه بر پیشرفت ابزارهای مدیریت داده، افزایش قابلیت دسترسی به داده و کاهش نرخ نگهداری داده نقش ایفا میکند. در طول چند سال گذشته افزایش سریع جمع آوری و نگه داری حجم اطلاعات وجود داشتهاست. با پیشنهادهای برخی از ناظران مبنی بر آنکه کمیت دادههای دنیا به طور تخمینی هر ساله دوبرابر میگردد. در همین زمان هزینه ذخیره سازی دادهها بطور قابل توجهی از دلار برای هر مگابایت به پنی برای مگابایت کاهش پیدا کردهاست. مطابقا قدرت محاسبهها در هر ۱۸ – ۲۴ ماه به دوبرابر ارتقاء پیدا کردهاست این در حالی است که هزینه قدرت محاسبه رو به کاهش است. داده کاو به طور معمول در دو حوزه خصوصی و عمومی افزایش پیدا کردهاست. سازمانها داده کاوی را به عنوان ابزاری برای بازدید اطلاعات مشتریان کاهش تقلب و اتلاف و کمک به تحقیقات پزشکی استفاده میکنند. با اینهمه ازدیاد داده کاوی به طبع بعضی از پیاده سازی و پیامد اشتباه را هم دارد.اینها شامل نگرانیهایی در مورد کیفیت دادهای که تحلیل میگردد، توانایی کار گروهی پایگاههای داده و نرمافزارها بین ارگانها و تخطیهای بالقوه به حریم شخصی میباشد.همچنین ملاحظاتی در مورد محدودیتهایی در داده کاوی در ارگانها که کارشان تاثیر بر امنیت دارد، نادیده گرفته میشود.
محدودیتهای داده کاوی
در حالیکه محصولات داده کاوی ابزارهای قدرتمندی میباشند، اما در نوع کاربردی کافی نیستند.برای کسب موفقیت، داده کاوی نیازمند تحلیل گران حرفهای و متخصصان ماهری میباشد که بتوانند ترکیب خروجی بوجود آمده را تحلیل و تفسیر نمایند.در نتیجه محدودیتهای داده کاوی مربوط به داده اولیه یا افراد است تا اینکه مربوط به تکنولوژی باشد.
اگرچه داده کاوی به الگوهای مشخص و روابط آنها کمک میکند، اما برای کاربر اهمیت و ارزش این الگوها را بیان نمیکند.تصمیماتی از این قبیل بر عهده خود کاربر است.برای نمونه در ارزیابی صحت داده کاوی، برنامه کاربردی در تشخیص مظنونان تروریست طراحی شده که ممکن است این مدل به کمک اطلاعات موجود در مورد تروریستهای شناخته شده، آزمایش شود.با اینهمه در حالیکه ممکن است اطلاعات شخص بطور معین دوباره تصدیق گردد، که این مورد به این منظور نیست که برنامه مظنونی را که رفتارش به طور خاص از مدل اصلی منحرف شده را تشخیص بدهد.
تشخیص رابطه بین رفتارها و یا متغیرها یکی دیگر از محدودیتهای داده کاوی میباشد که لزوماًروابط اتفاقی را تشخیص نمیدهد.برای مثال برنامههای کاربردی ممکن است الگوهای رفتاری را مشخص کند، مثل تمایل به خرید بلیط هواپیما درست قبل از حرکت که این موضوع به مشخصات درآمد، سطح تحصیلی و استفاده از اینترنت بستگی دارد.در حقیقت رفتارهای شخصی شامل شغل(نیاز به سفر در زمانی محدود)وضع خانوادگی(نیاز به مراقبت پزشکی برای مریض)یا تفریح (سود بردن از تخفیف دقایق پایانی برای دیدن مکانهای جدید) ممکن است بر روی متغیرهای اضافه تاثیر بگذارد.
ابزارهای داده کاوی
معروفترین ابزارهای دادهکاوی به ترتیب پرطرفدار بودن
Clementine که نسخه ۱۳ ان با نام SPSS Modeler نامیده میشود.
رپیدماینر
نرمافزار وکا
نرمافزار
برنامه های کاربردی و نرمافزار های داده کاوی متن-باز رایگان
Carrot2: پلتفرمی برای خوشه بندی متن و نتایج جستجو
Chemicalize.org: یک کاوشگر ساختمان شیمیایی و موتور جستجوی وب
ELKI: یک پروژه تحقیقاتی دانشگاهی با تحلیل خوشه ای پیشرفته و روش های تشخیص داده های خارج از محدوده که به زبان جاوا نوشته شده است.
GATE: یک پردازشگر زبان بومی و ابزار مهندسی زبان.
برنامه های کاربردی و نرمافزار های داده کاوی تجاری
Angoss KnowledgeSTUDIO: ابزار داده کاوی تولید شده توسط Angoss.
BIRT Analytics: ابزار داده کاوی بصری و تحلیل پیش بینی گر تولید شده توسط Actuate Corporation.
Clarabridge: راه حل تحلیلگر کلاس متن.
(E-NI(e-mining, e-monitor: ابزار داده کاوی مبتنی بر الگوهای موقتی.
IBM SPSS Modeler: نرمافزار داده کاوی تولید شده توسط IBM
Microsoft Analysis Services: نرمافزار داده کاوی تولید شده توسط مایکروسافت
Oracle Data Mining: نرمافزار داده کاوی تولید شده توسط اوراکل (کمیک)
بررسی اجمالی بازار نرمافزار های داده کاوی
تا کنون چندین محقق و سازمان بررسی هایی را بر روی ابزار های داده کاوی و راهنماییهایی برای داده کاو ها تهیه دیده اند. این بررسی ها بعضی از نقاط ضعف و قوت بسته های نرمافزاری را مشخص می کنند. همچنین خلاصه ای را از رفتار ها، اولویت ها و دید های داده کاوها تهیه کرده اند
درجه آزادی (آمار)
درجه آزادی یکی از مفاهیم بنیادین در آمار است. درک بسیاری از مفاهیم مطرح در آمار وابسته به درک مناسبی از این مفهوم است. بر اساس زمینهٔ کاربرد و شیوهٔ نگرش میتوان تعاریف مختلفی برای آن ارائه نمود که همه یک مفهومند:
در نظریهٔ برآورد:
تعداد مقادیری که یک آماره امکان تغییر دارد
تعداد مشاهدات مستقل منهای تعداد پارامترهای برآورد شده.
بطور معادل: تعداد مشاهدات مستقل منهای تعداد روابط معلوم میان مشاهدات
در نظریه آزمون:
بعد فضای مجهول (مدل کامل) منهای بعد فضای مفروض (مدل مقید)
در جبر خطی:
رتبهٔ یک فرم درجه دوم
بطور معادل: تعداد ابعاد یک زیر فضا که یک بردار میتواند آزادانه گردش کند (مربع طول بردار یک فرم درجه دوم است)
درک شهودی
مثال: یک عدد ثابت امکان تغییر ندارد پس درجه آزادی آن برابر صفر است.
یک نقطه در صفحه یک رابطه میان دو متغیر در فضای دو بعدی است. با این نقطه نمیتوان میزان همبستگی خطی دو متغیر را با برآورد خط رگرسیون تخمین زد. چون بینهایت خط از این نقطه گذراست. (تصویر مقابل) در این مثال درجه آزادی صفر است (تعداد مشاهدات مستقل - تعداد روابط معلوم میان مشاهدات = 0) اگر خطی را بعنوان خط رگرسیونی در نظر بگیریم، این مدل نه قابل رد و نه قابل قبول است. بنابراین تعداد نمونه های قابل استفاده برای این مدل صفر است.
برای رسم خط رگرسیون حداقل دو نقطه لازم است. با دو نقطه یک درجه آزادی وجود دارد. از دو نقطه فقط یک خط گذر میکند و این خط تنها برآورد ممکن است. با اینکه دقت برآورد 100 درصد است اما این دقت کاذب به علت کم بودن درجات آزادی و اطلاعات قابل استفاده است. نمونه های زیادی از تحقیقات با رسیدن به دقتی بالا تصور میکنند که مدل بدست آمده مناسب است . در حالی که درجات آزادی کم باعث این اشتباه شده است.
مثال: اگر دو مشاهده داشته باشیم، برای برآورد میانگین دو مشاهدهء مستقل داریم، اما برای برآورد واریانس تنها یک مشاهدهء مستقل وجود دارد. زیرا هر دو مشاهده دارای یک فاصله از میانگین هستند.
دیدگاه فلسفی
برای درک بهتر این مفهوم میتوان درجهء آزادی را یک معادل برای درجهء ابطال پذیری از دیدگاه فلاسفه ای مانند کارل پوپر دانست. اگر در مسئله ای درجات آزادی کم
باشد معادل است با اینکه ابطال پذیری آن مسئله کم است. یعنی با هر مشاهده ای تایید میشود و قابل ابطال نیست.
سازمان آماری
سازمان آماری سازمانی خدماتی است که وظیفهٔ تهیهٔ آمار را بر عهده دارد. دلیل وجود، رشد و مشارکت مشهود آنها در امور مربوط به دولت و جامعةخود، از توانایی آنها در تهیة اطلاعاتی برای حل مسائل مهم ریشه میگیرد. ولی اولویتها میتوانند سریعتر از توانایی سازمان برای تعدیل تلاش تولیدی خود تغییر کنند. به این دلیل، مهم است که مسئولان ارشد آن دارای شم قوی و روابطی باشند که بتوانند مشکلات جدی را شناسایی کرده و آنها را از آنچه ممکن است چیزی جز مسایل گذرا نباشند متمایز کنند.
شاخصهای پراکندگی
سنجشهای پراکندگی (به انگلیسی: Measures of Variability) به اعدادی گویند که پراکندگی مجموعهای از مشاهدات یا دادههای اندازه گیری شدهای را خلاصه و توصیف میکنند.
دامنه، واریانس، و انحراف معیار، هر سه نمونههایی از سنجشهای پراکندگی هستند.
ضریب تغییرات
در نظریه احتمال و آمار ضریب تغییرات (به انگلیسی: coefficient of variation، مخفف:CV) یک معیار بهنجار است که برای اندازهگیری توزیع دادههای آماری به کار میرود.
به عبارت دیگر ضریب تغییرات، میزان پراکندگی به ازای یک واحد از میانگین را بیان میکند. این مقدار زمانی تعریف شده است که میانگین صفر نباشد.
این مقدار بیبعد است به همین دلیل مناسب برای مقایسه دادههای آماری است که واحدهای مختلفی دارند.
ضریب تغییرات تنها قابل کاربرد برای مقیاسهای نسبی است و نمیتوان ار آن برای سنجش مقادیری که میتوانند مقدار منفی بگیرند استفاده کرد یا به بیان بهتر نمیتوان از آن برای سنجش مقادیر فاصلهای بهره برد. مثلاً اگر درجه حرارت را با مقیاس فارنهایت در نظر بگیریم برای آن نمیتوان از ضریب تغییر اسفاده کرد و باید از مقیاس کلوین که همیشه مقداری مثبت است استفاده کرد.
متغیر پنهان
متغیرهای پنهان(در مقابل متغیرهای مشاهده شده)در آمار، متغیرهای هستند که بصورت مسقیم قابل مشاهده نیستند اما از میان متغیرهای دیگر که قابل مشاهده هستند توسط یک الگوی ریاضی استنباط میشوند. آنها همچنین بعضی وقتها تحت عنوان متغیرهای پنهان، پارامترها ی مدل، متغیرهای فرضی یا ساختارهای فرضی شناخته میشوند.. استفاده متغیرهای پنهان در علوم اجتماعی متداول است، اقتصاد، پزشکی و تا حدی روبوتیک اما تعریف دقیق یک متغیر پنهان در این رشتهها کمی متفاوت است. مثالهای از متغیرهای پنهان در حوزه اقتصاد عبارتند از کیفیت زندگی، اطمینان کار، روحیه، خوشحالی و اصول محافظهکاری: اینها متغیرها هستند که مستقیماً نمیتوان آنها را سنجید. با این وجود یک مدل اقتصادی را میتوان از پیوند این متغیرهای پنهان با متغیرهای مشاهده شده (از قبیل تولید ناخالص داخلی) بدست آورد و مقادیر متغیرهای پنهان را از متغیرهای مشاهده شده محاسبه و استنباط نمود.
متغیر تصادفی
در آمار و احتمال متغیر تصادفی متغیری است که مقدار آن از اندازهگیری برخی از انواع فرآیندهای تصادفی بدست میآید. بطور رسمیتر، متغیر تصادفی تابعی است از فضای نمونه به اعداد حقیقی. بطور مستقیم متغیر تصادفی توصیف عددی خروجی یک آزمایش است (مثل برآمدهای ممکن از پرتاب دو تاس (۱و۱) و (۱و۲) و غیره).
متغیرهای تصادفی به دو نوع گسسته (متغیر تصادفی که ممکن است تعداد محدود یا توالی نامحدودی از مقادیر را بگیرد) و پیوسته (متغیری که ممکن است هر مقدار عددی در یک یا چند بازه را بگیرد) طبقهبندی میشوند. مقادیر ممکن یک متغیر تصادفی میتواند نشاندهندهٔ برآمدهای آزمایشی که هنوز انجام نشده یا مقادیر بالقوهٔ یک کمیت که مقدارهای موجود آن نامطمئن هستند (مثلا درنتیجه اطلاعات ناقص یا اندازهگیری نادقیق) باشد. یک متغیر تصادفی میتواند بعنوان یک کمیت که مقدارش ثابت نیست و مقادیر مختلفی را میتواند بگیرد در نظر گرفته شود و توزیع احتمال برای توصیف احتمال اتفاق افتادن آن مقادیر استفاده میشود.
متغیرهای تصادفی معمولاً با اعداد حقیقی مقداردهی میشوند؛ ولی میتوان انواع دلخواهی مانند مقدارهای بولی، اعداد مختلط، بردارها، ماتریسها، دنبالهها، درختها، مجموعهها، شکلها، منیوفیلدها، توابع و فرآیندها را درنظر گرفت. عبارت المان تصادفی همه این نوع مفاهیم را دربرمی گیرد.
متغیرهای تصادفی که با اعداد حقیقی مقداردهی میشوند، در علوم برای پیشبینی براساس دادههای بدست آمده از آزمایشهای علمی استفاده میشوند. علاوه بر کاربردهای علمی، متغیرهای تصادفی برای آنالیز بازیهای قمار و پدیدههای تصادفی بوجود آمدند. در چنین مواردی تابعی که خروجی را به یک عدد حقیقی مینگارد معمولا یک تابع همانی یا بطور مشابه یک تابع بدیهی است و بطور صریح توصیف نشده است. با این وجود در بسیاری از موارد بهتر است متغیر تصادفی را بصورت توابعی از سایر متغیرهای تصادفی درنظر بگیریم که دراینصورت تابع نگاشت استفاده شده در تعریف یک متغیر تصادفی مهم میشود. بعنوان مثال، رادیکال یک متغیر تصادفی با توزیع استاندارد (نرمال) خود یک متغیر تصادفی با توزیع کی دو است. شهود این مطلب بدین صورت است که تصور کنید اعداد تصادفی بسیاری با توزیع نرمال تولید کرده و از هرکدام رادیکال بگیریم و سپس هیستوگرام دادههای بدست آمده را بکشیم در اینصورت اگر دادهها به تعداد کافی باشند، نمودار هیستوگرام تابع چگالی توزیع کی دو را با یک درجه آزادی تقریب خواهد زد.
نامهای دیگر
در برخی از کتابهای قدیمیتر به جای «متغیر تصادفی»، اصطلاحهای «متغیر شانسی» و «متغیر استوکاستیکی» هم به کار رفته است.
انواع
متغیر تصادفی گسسته
متغیر تصادفی پیوسته
با توجه به وضع شمارایی فضای نمونهای S، متغیر میتواند گسسته یا پیوسته باشد. اگر S متناهی یا نامتناهی شمارا باشد متغیر تصادفی X گسسته و اگر ناشمارا باشد X پیوسته خواهد بود.
یک توزیع همچنین می تواند از نوع مختلط (mixed) باشد به این صورت که بخشی از آن مقادیر خاصی را بگیرد و بخش دیگر آن مقادیر روی یک بازه را بگیرد.
مقدار موثر
در ریاضیات، جذر متوسط مربع (به انگلیسی: root mean square یا quadratic mean) که با نام مقدار RMS و مقدار مؤثر (به انگلیسی: effective value) نیز شناخته میشود، معیاری آماری از اندازه کمیت متغیر است.
ورزش
ورزش به تمامی گونههای فعالیت فیزیکی بدن گفته میشود که شرکت کنندگان آن میتوانند به صورت منظم و سازمان یافته یا گاه به گاه در آن شرکت کنند و از آن برای بهبود تناسب اندامشان و یا فراهم آوردن سرگرمی و تفریح بهره ببرند. ورزش میتواند به صورت رقابتی برگزار شود که در این صورت باید بر پایهٔ رشته قوانینی که مورد توافق همگان است، یک یا چند برنده در آن مشخص گردد که در این گونه ورزشها شرکت کنندگان باید درجهای از توانمندیهای مربوط به آن رشته را دارا باشند به ویژه در ردههای بالاتر. هم اکنون با در نظر گرفتن ورزشهای تک نفره، صدها رشتهٔ ورزشی وجود دارد. ورزشهای گروهی میتواند افراد را در قالب دو یا چند گروه دسته بندی کند و تیمها با هم رقابت کنند.اینکه گونههایی از فعالیتهای غیر فیزیکی وجود دارد که گاهی آنها را به ورزش نسبت میدهند؛ برای نمونه میتوان به ورقبازی و بازیهای تختهای اشاره کرد.

تعریف ورزش به هدف و منظور از انجام آن بستگی دارد:
برای نمونه رقابت های شنا که در برابر هزاران نفر در یک استخر سرپوشیده ویژه مسابقات انجام میگیرد یک گونه از ورزش بشمار میرود در حالیکه شنا در یک استخر معمولی یا در دریا یک تفریح شمرده میشود.
رشتههای فراوانی در ورزش وجود دارند و مردم زمان و هزینه زیادی را چه به عنوان شرکت کننده و چه به عنوان تماشاگر صرف ورزش میکنند.
ورزش و ورزش کردن طی سالیان طولانی از قالب یک تفریح و سرگرمی به قالب یک حرفه و فعالیت درآمدهاست و تعداد بیشماری از ورزشکاران حرفهای در سراسر جهان از طریق ورزش به ثروت رسیدهاند. این یکی دیگر از خصوصیات ورزش به شمار میآید.
امروزه ورزش زنان نیز جایگاه ویژهای در مجامع بینالمللی پیدا کردهاست.
واژهٔ ورزش که از دیرباز معنای تمرین و ممارست داشت به هنگام تصویب «قانون ورزش اجباری در مدارس» در ۱۶ شهریور ماه ۱۳۰۶ خورشیدی بهطور رسمی به معنای امروزی وارد قاموس واژگان دولتی ایران شدهاست.
توسعهٔ ورزشها با توجه به گذشتهٔ کامل آنها، مطالب مهمی را دربارهٔ دگرگونیهای اجتماعی و دگرگونیهای خود ورزشها آشکار می نمایند.
کشفهای بسیار مدرنی در فرانسه، آفریقا و استرالیا دربارهٔ هنر غارنشینها وجود دارد (برای نمونه لاسکائوکس) که مربوط به زمان ماقبل تاریخ است اطلاعات زیادی دربارهٔ جشنهای مذهبی و رفتار انسانها از آن دوران را در دسترس قرار میدهد. دانشمندان با کمک تاریخ نویسی کربنی دریافتهاند که پیشینهٔ برخی از این منابع به ۳۰۰۰۰ سال پیش باز میگردد. شواهد مستقیم و کافی دربارهٔ ورزش از این منابع بدست نیامدهاست اما میتوان این برداشت را داشت که فعالیتهایی در آن دوران وجود داشته که برابر ورزش در زمان ما میشدهاست.
واقعیتهای هنری و ساختاری وجود دارد که نشان میدهد که در ۴۰۰۰ سال پیش از میلاد مسیح چینیها با ورزش و فعالیتهای شبیه آن سر و کار داشتهاند. بهنظر میرسد که ورزش ژیمناستیک یکی از ورزشهای پرطرفدار و عمومی در چین باستان بودهاست. آثار باقیمانده از فرعونها نشان میدهد که تعداد زیادی از ورزشها، شامل شنا و ماهیگیری، بطور کامل توسعه یافته و تکمیل شده بود و بطور منظمی در چندین هزار سال قبل در مصر باستان انجام میشدهاند. سایر ورزشهای مصر باستان شامل پرتاب نیزه، پرش ارتفاع و کشتی گرفتن بود. ورزشهای ایران یا پرشیای باستان مانند هنر نظامی ایرانیان درزمان زرتشتیان ارتباط نزدیکی با مهارتهای دفاعی و رزمی جنگی داشت. از رشتههای ورزشی دیگری که در پرشیا رواج داشت از چوگان و شمشیربازی سوار بر اسب میتوان نام برد. در اروپا، علائم باقیمانده از ایرلند باستان شمایلی از آماده کردن جنگاوران برای جنگ را نشان میدهد که یادآور ورزش هاکی ایرلندی در عصر حاضر است. پیشینه این تصاویر به ۱۳ قرن قبل از میلاد مسیح باز میگردد.
شمار زیادی از رشتههای ورزشی از قبیل، کشتی، دو، بکس، پرتاب نیزه، پرتاب دیسک، راندن گاری در زمان یونان باستان وجود داشتهاند. این فعالیتها ارتباط فرهنگ نظامی و توسعه ورزش در یونان باستان را نشان میدهد. از زمانی که یونانیها المپیک را بوجود آوردند، ورزش بخشی از فرهنگ این کشور شدهاست. بازیهای المپیک در ابتدا هر چهار سال یکبار در المپیا (دهکده کوچکی در پلئوپونس) برگزار میشدهاست. از آن روزگار تا زمان حال این ورزشها بهشکل فزایندهای سازمان یافتهتر شدهاند و مقررات ویژهای برای آنها تدوین شدهاست. صنعتی شدن زمان استراحت و تفریح بیشتری برای شهروندان کشورهای توسعه یافته و درحال توسعه فراهم کرده و باعث شده مدت زمان بیشتری برای ورزش صرف کنند. چه بهعنوان تماشاچی مسابقههای هیجانانگیز ورزشی و چه بهعنوان شرکت کننده در اینگونه رقابتها. این گرایشها و تمایلها با کارآیی مد یاوسایل ارتباط جمعی گسترده و ارتباطات جهانی وسیع ادامه دارد. حرفهای شدن در یک ورزش یک مورد و امتیاز خاصی شده و بعلاوه بودن آنها محبوبیت ومردمی بودن ورزشها را افزایش دادهاست، تا آن جا که طرفداران ورزشها شروع به تبلیغ و نمایش ورزشکاران حرفهای از طریق رادیو، تلویزیون و اینترنت کرده اند—که همه آنها در تمرینها و رقابتهای ورزشی با ورزشهای آماتور شرکت و نقش دارند.
فوتبال محبوبترین و مردمیترین ورزش در سطح جهان است.
آریاییها یکی از شعب مردمان هند و اروپایی بودند. برخی از باستان شناسان معتقد هستند که ساکنین اولیه آریانها یا آریاییها در قسمت شرقی و جنوب شرقی دریای خزر بوده و برخی دیگر آنها را به مردمان قفقازیه که به قسمتهای جنوبی خزر آمدهاند نسبت میدهند.
اینان مردانی بودند که به عنوان سرباز مزدور زندگی میکردند. ایشان سربازانی را تشکیل میدادند که میبایست یک روز جانشین امرایی بشوند که خود در خدمت ایشان بودند. اریخ مهاجرت
بنابراین آریانها مردمانی قوی، سلحشور و صحرا گرد بوده و کار عمده شان پرورش حیوانات اهلی و شکار و سواری و تیراندازی بودهاست.
ورزش و تقویت قوای بدنی و مهارت در جنگ و سواری و تیراندازی و راهپیمایی از اصول متداول این مردم بودهاست قومی که دائما در حال کوچیدن و منازعه با بومیهای محلی بوده و به قهر و غلبه زمینها و کشتزارها را تصاحب میکرده قطعا باید چالاک و سلحشور و بردبار و قوی اندام باشند.
این مردم بتدریج شهر نشین شده و ده و شهر و قصبه بوجود آوردهاند از وقتی که آریانها شهر نشین شدند همیشه مورد هجوم شعبه دیگر آریاییها – سکاها واقع شدند.
قبل از تشکیل دولت ماد، آریانها به شکل ملوک الطوایفی میزیسته و رئیس هر خانواده با قدرت کامل خانواده را اداره میکرد، و در مواقع جنگ یکی از رؤسای این خانواده فرماندهی لشکر را به عهده میگرفتند که بعدا مقام سلطنت از همین اختیارات به وجود آمد. در آن زمان هیچ یک از امراء و سلاطین قدرت رئیس خانواده را تهدید نمیکردند.
از قرن نهم قبل از میلاد سه تیره بزرگ آریایی در سرزمین ایران به حکومت رسیدند، در مشرق باختریها، در مغرب مادها و در جنوب پارسها.
آن چه از اخلاق و آداب این زمان روشن است حالت آماد گی قوم آریایی برای حرکت و جنگ و دفاع بوده و در این عصر کشت غلات کاملا مرسوم شده و در دهات و قصبات مزارع رونق بیشتری یافتند.
تربیت حیوانات اهلی را عملی ساخته و اسب و سگ از نظر فوایدی که در جنگ و سفر و حضر و نگهبانی رمه و گله داشتند بیشتر اهمیت داشت.
روحیه ورزشکاری: تحریک و تحرک بخشیدن به ورزشها اغلب یک حالت ووسیله بیاد ماندنی نمیباشد. برای مثال، پیشقدمان دریانوردی و قایق رانی اغلب میگفتند که اغلب مسابقه قایقهای باد شونده به معنی تحریک بخشیدن به مهارتهای یادگیرندگان قایق رانی و دریانوردی است. اما با وجود این، اغلب مهارتهای محرک برای افزایش قابلیت کارآیی و عملکرد در موقع رقابت بیشتر از یادگیری باهم ادغام میشوند. روحیه ورزشکاری یک روحیه یا حالتی را بیان میکند که از آن فعالیت یا رقابت بخاطر خود آن لذت میبرند. این حالت عاطفی معروف توسط خبرنگار ورزشی Grantland Rice به این صورت معنی میشود که مهم نیست که شما برنده یا بازنده شدید بلکه این مهم است که بازی را انجام دادهاید. ، " و شعار المپیک مدرن که توسط بنیان گذار آن پییر د کوبرتن این است. مهمترین چیز این نیست که برنده نشدید اما این است که شما شرکت کردید، نمونههایی از بیان این حالت عاطفی مناسب هستند. بیان میشود.
اما اغلب فشار برای رقابت یا یک تمایل فردی برای احراز کارآیی مانند فشار و زور تکنولوژیمی تواند بر بازی لذت بخش و رقابت عادلانه توسط شرکت کنندگان تاثیر بگذارد.
افراد مسئول برای فعالیتهای تفریحی اغلب در جستجوی شناخته شدن و کسب احترام در ورزشها هستند که با پیوستن به فدراسیون ورزشها مانند کمیته بین المللی المپیک یا با تشکیل هیئت منظم وقانونی اقدام به این کار میکنند. دراین صورت ورزشها از حالت تفریحی به حالت رسمی عوض میشوند: در ارتباط با اعضای جدید اخیر از قبیل دوچرخه سواران کوهنوردان برفی، و کشتی گیران هستند بعضی از این فعالیتها جنبه عمومی و همگانی دارند اما شکل گیری غیر یکسان در فرمهای مختلف برای مدت زمان طولانی دوام داشتهاست. در حقیقت، مققرات رسمی ورزشها در ارتباط با زندگی مدرن و توسعه فزایندهاست.
روحیه ورزشکاری، تحت هر اسمی مربوط به رفتار رقابت کننده در قبل، در طی و بعد از رقابت میباشد. نه تنها اگر یک ورزشکار برنده شود باید روحیه ورزشکاری خوبی داشته باشد وآن را حفظ کند بلکه اگر او ببازد باید همچنین این روحیه را حفظ کند. برای مثال در فوتبال روحیه ورزشکاری چنان ملاحضه شدهاست که برای معالجه یک ورزشکار زخمی از طرف مقابل توپ را به بیرون از زمین بازی شوت میکند که امکان معالجه او را فراهم سازند. بطور دوجانبه تیم دیگر انتظار دارد که توپ را در موقع پرتاب به داخل زمین بازی دریافت کند
خشونت در ورزشها شامل رد شدن از روی خط رقابت عادلانه و ایجاد خشونت و دعوا است. ورزشکاران، مربیان، طرفداران آنها و والدین بعضی وقتها رفتار خشونت آمیز را بر علیه افراد یا املاک و تاسیسات در نمایش ناراحتی از عادلانه بودن نمایش، احاطه طرف مقابل و عصبانیت یا جشن و سرور در پیش میگیرند.
تغذیه
امروز بیش از هر زمان دیگری ارزش فعالیتهای بدنی و نقش آن در سلامت شناخته شدهاست. در واقع زندگی ماشینی، فعالیتهای حرکتی روزمره را کاهش داده و برای جلوگیری از بروز بسیاری از بیماریها ورزش امری ضروری است. گاهی یک ورزشکار فراتر از حفظ سلامتی در رشتهای خاص جهت کسب مقام قهرمانی کوشش مستمر مینماید که در این شرایط تمامی عوامل در بدن تغییر میکنند. قلب، ریه، دستگاه گوارش، هورمونها، سیستم عصبی و بخصوص ماهیچهها نیاز به تطابق با وضعیت جدید دارند. در واقع هیچ استرس و فشاری مانند یک ورزش سنگین و طولانی مدت روی بدن تأثیر نمیگذارد. بنابراین جهت کسب مقام قهرمانی یکی از مسایل مهم، تغذیه ورزشکاران است.
انرژی
انرژی مورد نیاز برای یک ورزشکار به عوامل مختلفی مثل خصوصیات فردی ورزشکار (قد، وزن، جثه فرد، جنس، سن و بلوغ)، مدت ورزش، نوع و شدت ورزش و شرایط جغرافیایی محل زندگی فرد بستگی دارد. بطور کلی طی فعالیت ورزشی از یک طرف میزان متابولیسم پایه (BMR) افزایش مییابد و از طرف دیگر فعالیت فرد زیاد میشود. بنابراین مقدار نیاز انرژی بین ۳ تا ۶ هزار کیلو کالری در روز توصیه میشود. برای ورزشهای سنگین مثل اسکی، ماراتن و ورزشهای تیمی حداکثر انرژی لازم است که برای این نوع ورزشها توصیه میشود ۷۵-۷۰ درصد کالری رژیم از منبع کربوهیدرات که قسمت اعظم آن از نوع کمپلکس میباشد تأمین گردد.
در ورزشهایی که انرژی زیادی در مدت کوتاه نیاز دارند مثل کشتی و شنای ۵۰ متر، میزان نیاز انرژی بین ۵۰۰-۳۰۰۰ کیلو کالری است. کمترین میزان نیاز به انرژی مربوط به فعالیتهای ورزشی با شدت کم و مدت طولانی و یا ورزشهایی که با شدت زیاد و مدت کم انجام میشود است. ورزشهایی مثل پرش طول، پرش ارتفاع، پرتاب دیسک، پرش با نیزه و غیره.... به طور کلی میزان نیاز انرژی برای زنان ورزشکار ۱۰ درصد کمتر از مردان ورزشکارمیباشد.
پروتئین
پروتیین برای رشد و بازسازی، انقباض عضلانی و گاهی تولید انرژی برای ورزشکاران لازم است. اما مصرف زیاد پروتیین بر قدرت عضلانی نمیافزاید (فقط حجم عضلات را زیاد میکند) و توصیه میشود ۱۵-۱۲ درصد انرژی مصرفی بایستی از منبع پروتیین تأمین شود. چون نیاز ورزشکاران به انرژی افزایش مییابد، بنابراین مقدار پروتیین مورد نیاز برای فعالیتهای ورزشی حداکثر ۵/۱ گرم به ازای هر کیلوگرم وزن بدن در روز است که در مورد پروتیین مصرفی توصیه میشود.
نسبت پروتیین حیوانی به گیاهی ۶۰ به ۴۰ میباشد و نوع پروتیین مصرفی بهتر است از گوشتهای کم چربی (گوشت سفید مثل مرغ و ماهی) و بیشتر بصورت کبابی یا آب پز باشد. سفیده تخم مرغ و لبنیات کم چربی نیز از منابع خوب پروتیین هستند. جگر منبع خوبی از پروتیین، آهن، فسفر، ویتامینهای گروه AوB میباشد. اما بدلیل اینکه غنی از اسیدهای نوکلییک، ترکیبات پوریندار و کلسترول است، مصرف آن بیش از هفتهای یک بار توصیه نمیشود. باید به این نکته توجه کرد که مصرف زیاد پروتیین باعث ایجاد عوارضی مثل از دست دادن کلسیم، خشکی بدن، ایجاد نقرس، دهیدراتاسیون یا کاهش آب بدن، کنونریس و اختلالات کلیوی میشود.
چربی
جهت تولید انرژی برای فعالیتهایی که مدت زیادی طول میکشد سوختن مواد حاوی چربی ضروری است. با طولانی شدن ورزش، اسیدهای چرب آزاد از ذخایر بافت چربی رها میشوند و برای مصرف عضلات به عنوان سوخت استفاده میشوند.
عضلات در ۶۰ تا ۹۰ دقیقه ابتدای ورزش از گلوکز و گلیکوژن ذخیره شده استفاده میکنند و پس از ۹ دقیقه اسیدهای چرب آزاد جهت سوخت مصرف میشوند. تحقیقات نشان داده است که چربی زیاد در رژیم غذایی باعث کاهش قدرت ورزشکاران میشود. در تحقیقی که روی دوچرخه سواران انجام گرفته مشاهده شده دوچرخه سوارانی که غذای مصرفی آنها غنی از کربوهیدرات پیچیده (نانهای سبوس دار، پاستا و...) و محدود از چربی بوده، تا ۲۴۰ دقیقه دوچرخهسواری کردهاند. در حالی که در نتیجه خوردن غذای چرب مقاومت آنها کم شده و حداکثر تا ۷۵ دقیقه توانستهاند فعالیت دوچرخه سواری داشته باشند. بطور کلی چربی مصرفی باید کمتر از ۲۵ درصد کالری رژیم باشد که از این مقدار ۱۰ درصد آن به اسیدهای چرب غیر اشباع حاوی چند باند دوگانه (روغن گیاهی مایع) اختصاص داده شود.
ورزش به تمامی گونههای فعالیت فیزیکی بدن گفته میشود که شرکت کنندگان آن میتوانند به صورت منظم و سازمان یافته یا گاه به گاه در آن شرکت کنند و از آن برای بهبود تناسب اندامشان و یا فراهم آوردن سرگرمی و تفریح بهره ببرند. ورزش میتواند به صورت رقابتی برگزار شود که در این صورت باید بر پایهٔ رشته قوانینی که مورد توافق همگان است، یک یا چند برنده در آن مشخص گردد که در این گونه ورزشها شرکت کنندگان باید درجهای از توانمندیهای مربوط به آن رشته را دارا باشند به ویژه در ردههای بالاتر. هم اکنون با در نظر گرفتن ورزشهای تک نفره، صدها رشتهٔ ورزشی وجود دارد. ورزشهای گروهی میتواند افراد را در قالب دو یا چند گروه دسته بندی کند و تیمها با هم رقابت کنند.اینکه گونههایی از فعالیتهای غیر فیزیکی وجود دارد که گاهی آنها را به ورزش نسبت میدهند؛ برای نمونه میتوان به ورقبازی و بازیهای تختهای اشاره کرد.

تعریف ورزش به هدف و منظور از انجام آن بستگی دارد:
برای نمونه رقابت های شنا که در برابر هزاران نفر در یک استخر سرپوشیده ویژه مسابقات انجام میگیرد یک گونه از ورزش بشمار میرود در حالیکه شنا در یک استخر معمولی یا در دریا یک تفریح شمرده میشود.
رشتههای فراوانی در ورزش وجود دارند و مردم زمان و هزینه زیادی را چه به عنوان شرکت کننده و چه به عنوان تماشاگر صرف ورزش میکنند.
ورزش و ورزش کردن طی سالیان طولانی از قالب یک تفریح و سرگرمی به قالب یک حرفه و فعالیت درآمدهاست و تعداد بیشماری از ورزشکاران حرفهای در سراسر جهان از طریق ورزش به ثروت رسیدهاند. این یکی دیگر از خصوصیات ورزش به شمار میآید.
امروزه ورزش زنان نیز جایگاه ویژهای در مجامع بینالمللی پیدا کردهاست.
واژهٔ ورزش که از دیرباز معنای تمرین و ممارست داشت به هنگام تصویب «قانون ورزش اجباری در مدارس» در ۱۶ شهریور ماه ۱۳۰۶ خورشیدی بهطور رسمی به معنای امروزی وارد قاموس واژگان دولتی ایران شدهاست.
توسعهٔ ورزشها با توجه به گذشتهٔ کامل آنها، مطالب مهمی را دربارهٔ دگرگونیهای اجتماعی و دگرگونیهای خود ورزشها آشکار می نمایند.
کشفهای بسیار مدرنی در فرانسه، آفریقا و استرالیا دربارهٔ هنر غارنشینها وجود دارد (برای نمونه لاسکائوکس) که مربوط به زمان ماقبل تاریخ است اطلاعات زیادی دربارهٔ جشنهای مذهبی و رفتار انسانها از آن دوران را در دسترس قرار میدهد. دانشمندان با کمک تاریخ نویسی کربنی دریافتهاند که پیشینهٔ برخی از این منابع به ۳۰۰۰۰ سال پیش باز میگردد. شواهد مستقیم و کافی دربارهٔ ورزش از این منابع بدست نیامدهاست اما میتوان این برداشت را داشت که فعالیتهایی در آن دوران وجود داشته که برابر ورزش در زمان ما میشدهاست.
واقعیتهای هنری و ساختاری وجود دارد که نشان میدهد که در ۴۰۰۰ سال پیش از میلاد مسیح چینیها با ورزش و فعالیتهای شبیه آن سر و کار داشتهاند. بهنظر میرسد که ورزش ژیمناستیک یکی از ورزشهای پرطرفدار و عمومی در چین باستان بودهاست. آثار باقیمانده از فرعونها نشان میدهد که تعداد زیادی از ورزشها، شامل شنا و ماهیگیری، بطور کامل توسعه یافته و تکمیل شده بود و بطور منظمی در چندین هزار سال قبل در مصر باستان انجام میشدهاند. سایر ورزشهای مصر باستان شامل پرتاب نیزه، پرش ارتفاع و کشتی گرفتن بود. ورزشهای ایران یا پرشیای باستان مانند هنر نظامی ایرانیان درزمان زرتشتیان ارتباط نزدیکی با مهارتهای دفاعی و رزمی جنگی داشت. از رشتههای ورزشی دیگری که در پرشیا رواج داشت از چوگان و شمشیربازی سوار بر اسب میتوان نام برد. در اروپا، علائم باقیمانده از ایرلند باستان شمایلی از آماده کردن جنگاوران برای جنگ را نشان میدهد که یادآور ورزش هاکی ایرلندی در عصر حاضر است. پیشینه این تصاویر به ۱۳ قرن قبل از میلاد مسیح باز میگردد.
شمار زیادی از رشتههای ورزشی از قبیل، کشتی، دو، بکس، پرتاب نیزه، پرتاب دیسک، راندن گاری در زمان یونان باستان وجود داشتهاند. این فعالیتها ارتباط فرهنگ نظامی و توسعه ورزش در یونان باستان را نشان میدهد. از زمانی که یونانیها المپیک را بوجود آوردند، ورزش بخشی از فرهنگ این کشور شدهاست. بازیهای المپیک در ابتدا هر چهار سال یکبار در المپیا (دهکده کوچکی در پلئوپونس) برگزار میشدهاست. از آن روزگار تا زمان حال این ورزشها بهشکل فزایندهای سازمان یافتهتر شدهاند و مقررات ویژهای برای آنها تدوین شدهاست. صنعتی شدن زمان استراحت و تفریح بیشتری برای شهروندان کشورهای توسعه یافته و درحال توسعه فراهم کرده و باعث شده مدت زمان بیشتری برای ورزش صرف کنند. چه بهعنوان تماشاچی مسابقههای هیجانانگیز ورزشی و چه بهعنوان شرکت کننده در اینگونه رقابتها. این گرایشها و تمایلها با کارآیی مد یاوسایل ارتباط جمعی گسترده و ارتباطات جهانی وسیع ادامه دارد. حرفهای شدن در یک ورزش یک مورد و امتیاز خاصی شده و بعلاوه بودن آنها محبوبیت ومردمی بودن ورزشها را افزایش دادهاست، تا آن جا که طرفداران ورزشها شروع به تبلیغ و نمایش ورزشکاران حرفهای از طریق رادیو، تلویزیون و اینترنت کرده اند—که همه آنها در تمرینها و رقابتهای ورزشی با ورزشهای آماتور شرکت و نقش دارند.
فوتبال محبوبترین و مردمیترین ورزش در سطح جهان است.
آریاییها یکی از شعب مردمان هند و اروپایی بودند. برخی از باستان شناسان معتقد هستند که ساکنین اولیه آریانها یا آریاییها در قسمت شرقی و جنوب شرقی دریای خزر بوده و برخی دیگر آنها را به مردمان قفقازیه که به قسمتهای جنوبی خزر آمدهاند نسبت میدهند.
اینان مردانی بودند که به عنوان سرباز مزدور زندگی میکردند. ایشان سربازانی را تشکیل میدادند که میبایست یک روز جانشین امرایی بشوند که خود در خدمت ایشان بودند. اریخ مهاجرت
بنابراین آریانها مردمانی قوی، سلحشور و صحرا گرد بوده و کار عمده شان پرورش حیوانات اهلی و شکار و سواری و تیراندازی بودهاست.
ورزش و تقویت قوای بدنی و مهارت در جنگ و سواری و تیراندازی و راهپیمایی از اصول متداول این مردم بودهاست قومی که دائما در حال کوچیدن و منازعه با بومیهای محلی بوده و به قهر و غلبه زمینها و کشتزارها را تصاحب میکرده قطعا باید چالاک و سلحشور و بردبار و قوی اندام باشند.
این مردم بتدریج شهر نشین شده و ده و شهر و قصبه بوجود آوردهاند از وقتی که آریانها شهر نشین شدند همیشه مورد هجوم شعبه دیگر آریاییها – سکاها واقع شدند.
قبل از تشکیل دولت ماد، آریانها به شکل ملوک الطوایفی میزیسته و رئیس هر خانواده با قدرت کامل خانواده را اداره میکرد، و در مواقع جنگ یکی از رؤسای این خانواده فرماندهی لشکر را به عهده میگرفتند که بعدا مقام سلطنت از همین اختیارات به وجود آمد. در آن زمان هیچ یک از امراء و سلاطین قدرت رئیس خانواده را تهدید نمیکردند.
از قرن نهم قبل از میلاد سه تیره بزرگ آریایی در سرزمین ایران به حکومت رسیدند، در مشرق باختریها، در مغرب مادها و در جنوب پارسها.
آن چه از اخلاق و آداب این زمان روشن است حالت آماد گی قوم آریایی برای حرکت و جنگ و دفاع بوده و در این عصر کشت غلات کاملا مرسوم شده و در دهات و قصبات مزارع رونق بیشتری یافتند.
تربیت حیوانات اهلی را عملی ساخته و اسب و سگ از نظر فوایدی که در جنگ و سفر و حضر و نگهبانی رمه و گله داشتند بیشتر اهمیت داشت.
روحیه ورزشکاری: تحریک و تحرک بخشیدن به ورزشها اغلب یک حالت ووسیله بیاد ماندنی نمیباشد. برای مثال، پیشقدمان دریانوردی و قایق رانی اغلب میگفتند که اغلب مسابقه قایقهای باد شونده به معنی تحریک بخشیدن به مهارتهای یادگیرندگان قایق رانی و دریانوردی است. اما با وجود این، اغلب مهارتهای محرک برای افزایش قابلیت کارآیی و عملکرد در موقع رقابت بیشتر از یادگیری باهم ادغام میشوند. روحیه ورزشکاری یک روحیه یا حالتی را بیان میکند که از آن فعالیت یا رقابت بخاطر خود آن لذت میبرند. این حالت عاطفی معروف توسط خبرنگار ورزشی Grantland Rice به این صورت معنی میشود که مهم نیست که شما برنده یا بازنده شدید بلکه این مهم است که بازی را انجام دادهاید. ، " و شعار المپیک مدرن که توسط بنیان گذار آن پییر د کوبرتن این است. مهمترین چیز این نیست که برنده نشدید اما این است که شما شرکت کردید، نمونههایی از بیان این حالت عاطفی مناسب هستند. بیان میشود.
اما اغلب فشار برای رقابت یا یک تمایل فردی برای احراز کارآیی مانند فشار و زور تکنولوژیمی تواند بر بازی لذت بخش و رقابت عادلانه توسط شرکت کنندگان تاثیر بگذارد.
افراد مسئول برای فعالیتهای تفریحی اغلب در جستجوی شناخته شدن و کسب احترام در ورزشها هستند که با پیوستن به فدراسیون ورزشها مانند کمیته بین المللی المپیک یا با تشکیل هیئت منظم وقانونی اقدام به این کار میکنند. دراین صورت ورزشها از حالت تفریحی به حالت رسمی عوض میشوند: در ارتباط با اعضای جدید اخیر از قبیل دوچرخه سواران کوهنوردان برفی، و کشتی گیران هستند بعضی از این فعالیتها جنبه عمومی و همگانی دارند اما شکل گیری غیر یکسان در فرمهای مختلف برای مدت زمان طولانی دوام داشتهاست. در حقیقت، مققرات رسمی ورزشها در ارتباط با زندگی مدرن و توسعه فزایندهاست.
روحیه ورزشکاری، تحت هر اسمی مربوط به رفتار رقابت کننده در قبل، در طی و بعد از رقابت میباشد. نه تنها اگر یک ورزشکار برنده شود باید روحیه ورزشکاری خوبی داشته باشد وآن را حفظ کند بلکه اگر او ببازد باید همچنین این روحیه را حفظ کند. برای مثال در فوتبال روحیه ورزشکاری چنان ملاحضه شدهاست که برای معالجه یک ورزشکار زخمی از طرف مقابل توپ را به بیرون از زمین بازی شوت میکند که امکان معالجه او را فراهم سازند. بطور دوجانبه تیم دیگر انتظار دارد که توپ را در موقع پرتاب به داخل زمین بازی دریافت کند
خشونت در ورزشها شامل رد شدن از روی خط رقابت عادلانه و ایجاد خشونت و دعوا است. ورزشکاران، مربیان، طرفداران آنها و والدین بعضی وقتها رفتار خشونت آمیز را بر علیه افراد یا املاک و تاسیسات در نمایش ناراحتی از عادلانه بودن نمایش، احاطه طرف مقابل و عصبانیت یا جشن و سرور در پیش میگیرند.
تغذیه
امروز بیش از هر زمان دیگری ارزش فعالیتهای بدنی و نقش آن در سلامت شناخته شدهاست. در واقع زندگی ماشینی، فعالیتهای حرکتی روزمره را کاهش داده و برای جلوگیری از بروز بسیاری از بیماریها ورزش امری ضروری است. گاهی یک ورزشکار فراتر از حفظ سلامتی در رشتهای خاص جهت کسب مقام قهرمانی کوشش مستمر مینماید که در این شرایط تمامی عوامل در بدن تغییر میکنند. قلب، ریه، دستگاه گوارش، هورمونها، سیستم عصبی و بخصوص ماهیچهها نیاز به تطابق با وضعیت جدید دارند. در واقع هیچ استرس و فشاری مانند یک ورزش سنگین و طولانی مدت روی بدن تأثیر نمیگذارد. بنابراین جهت کسب مقام قهرمانی یکی از مسایل مهم، تغذیه ورزشکاران است.
انرژی
انرژی مورد نیاز برای یک ورزشکار به عوامل مختلفی مثل خصوصیات فردی ورزشکار (قد، وزن، جثه فرد، جنس، سن و بلوغ)، مدت ورزش، نوع و شدت ورزش و شرایط جغرافیایی محل زندگی فرد بستگی دارد. بطور کلی طی فعالیت ورزشی از یک طرف میزان متابولیسم پایه (BMR) افزایش مییابد و از طرف دیگر فعالیت فرد زیاد میشود. بنابراین مقدار نیاز انرژی بین ۳ تا ۶ هزار کیلو کالری در روز توصیه میشود. برای ورزشهای سنگین مثل اسکی، ماراتن و ورزشهای تیمی حداکثر انرژی لازم است که برای این نوع ورزشها توصیه میشود ۷۵-۷۰ درصد کالری رژیم از منبع کربوهیدرات که قسمت اعظم آن از نوع کمپلکس میباشد تأمین گردد.
در ورزشهایی که انرژی زیادی در مدت کوتاه نیاز دارند مثل کشتی و شنای ۵۰ متر، میزان نیاز انرژی بین ۵۰۰-۳۰۰۰ کیلو کالری است. کمترین میزان نیاز به انرژی مربوط به فعالیتهای ورزشی با شدت کم و مدت طولانی و یا ورزشهایی که با شدت زیاد و مدت کم انجام میشود است. ورزشهایی مثل پرش طول، پرش ارتفاع، پرتاب دیسک، پرش با نیزه و غیره.... به طور کلی میزان نیاز انرژی برای زنان ورزشکار ۱۰ درصد کمتر از مردان ورزشکارمیباشد.
پروتئین
پروتیین برای رشد و بازسازی، انقباض عضلانی و گاهی تولید انرژی برای ورزشکاران لازم است. اما مصرف زیاد پروتیین بر قدرت عضلانی نمیافزاید (فقط حجم عضلات را زیاد میکند) و توصیه میشود ۱۵-۱۲ درصد انرژی مصرفی بایستی از منبع پروتیین تأمین شود. چون نیاز ورزشکاران به انرژی افزایش مییابد، بنابراین مقدار پروتیین مورد نیاز برای فعالیتهای ورزشی حداکثر ۵/۱ گرم به ازای هر کیلوگرم وزن بدن در روز است که در مورد پروتیین مصرفی توصیه میشود.
نسبت پروتیین حیوانی به گیاهی ۶۰ به ۴۰ میباشد و نوع پروتیین مصرفی بهتر است از گوشتهای کم چربی (گوشت سفید مثل مرغ و ماهی) و بیشتر بصورت کبابی یا آب پز باشد. سفیده تخم مرغ و لبنیات کم چربی نیز از منابع خوب پروتیین هستند. جگر منبع خوبی از پروتیین، آهن، فسفر، ویتامینهای گروه AوB میباشد. اما بدلیل اینکه غنی از اسیدهای نوکلییک، ترکیبات پوریندار و کلسترول است، مصرف آن بیش از هفتهای یک بار توصیه نمیشود. باید به این نکته توجه کرد که مصرف زیاد پروتیین باعث ایجاد عوارضی مثل از دست دادن کلسیم، خشکی بدن، ایجاد نقرس، دهیدراتاسیون یا کاهش آب بدن، کنونریس و اختلالات کلیوی میشود.
چربی
جهت تولید انرژی برای فعالیتهایی که مدت زیادی طول میکشد سوختن مواد حاوی چربی ضروری است. با طولانی شدن ورزش، اسیدهای چرب آزاد از ذخایر بافت چربی رها میشوند و برای مصرف عضلات به عنوان سوخت استفاده میشوند.
عضلات در ۶۰ تا ۹۰ دقیقه ابتدای ورزش از گلوکز و گلیکوژن ذخیره شده استفاده میکنند و پس از ۹ دقیقه اسیدهای چرب آزاد جهت سوخت مصرف میشوند. تحقیقات نشان داده است که چربی زیاد در رژیم غذایی باعث کاهش قدرت ورزشکاران میشود. در تحقیقی که روی دوچرخه سواران انجام گرفته مشاهده شده دوچرخه سوارانی که غذای مصرفی آنها غنی از کربوهیدرات پیچیده (نانهای سبوس دار، پاستا و...) و محدود از چربی بوده، تا ۲۴۰ دقیقه دوچرخهسواری کردهاند. در حالی که در نتیجه خوردن غذای چرب مقاومت آنها کم شده و حداکثر تا ۷۵ دقیقه توانستهاند فعالیت دوچرخه سواری داشته باشند. بطور کلی چربی مصرفی باید کمتر از ۲۵ درصد کالری رژیم باشد که از این مقدار ۱۰ درصد آن به اسیدهای چرب غیر اشباع حاوی چند باند دوگانه (روغن گیاهی مایع) اختصاص داده شود.
ساعت : 4:53 am | نویسنده : admin
|
مطلب بعدی