راه نوردی
راه‌نوردی

راه‌نوردی نوعی پیاده‌رَوی در مسیر ناهموار و سخت و طولانی و به گردشگری که چنین مسیرهایی را بپیماید راه‌نورد گفته می‌شود. راه‌نوردی معمولاً در مسیرهایی انجام می‌شود که وسایط نقلیه در آن‌ها حرکت نمی‌کنند.





راه‌نوردی با پیاده‌گَردی که نوعی پیاده‌رَوی به قصد گردش و لذت بردن از مناظر در مسیرهای روستایی یا مناطق کوهستانی است تفاوت دارد.

راه‌نوردها معمولاً کوله‌پشتی و توشه همراه خود می‌برند و مسیرهایی که قصد پیمودنش را دارند را از پیش بررسی و تعیین می‌کنند. راه‌نوردی گردشگران به‌ویژه در مسیرهایی در هیمالیا رواج دارد. در ایران از مسیرهای معروف راه‌نوردی می‌توان به دامنه‌های البرز در درکه و توچال اشاره کرد.






عابر پیاده

عابر پیاده به فردی گفته می‌شود که یک مسافت را با پا به صورت پیاده‌روی یا دو طی می‌کند. در بعضی از جوامع افرادی که از وسایل سبک و کم‌سرعتی مانند: اسکیت‌برد، ویلچر، roller skates، scooter و موارد مشابه برای حمل و نقل استفاده می‌کنند نیز جزو عابر پیاده محسوب می‌گردند.

در قوانین کنترل ترافیک و قوانین شهرسازی عابر پیاده حق و حقوق خاص به خود را داراست و برای وی امکانات خاصی در طراحی شهری و ترافیکی درنظر می‌گیرند.






گذر

گُذَر در فرهنگ اصطلاحات طهران قدیم به مکانهایی خاص در بافت قدیمی شهر اشاره داشت. گذرها معابری بودند که محلات مختلف شهرهای قدیم و به خصوص طهران را به یکدیگر متصل می ساختند. بر اساس نوشته ناصر نجمی بازارهای بی سقف تهران را گذر می گفته اند.

از گذرهای معروف تهران که تا امروز نیز نام آنها در بین مردم رواج دارد می توان به این گذرها اشاره نمود:

گذر امامزاده یحیی، گذر تقی خان، گذر حمام خانم (حمام قبله)، گذر حمام میرزا ولی ، گذر حمام نواب ، گذر دانگی ، گذر دباغخانه، گذر سرپولک ، گذر قلی ، گذر مروی ، گذر مستوفی (منسوب به مستوفی الممالک)، گذر مهدی موش ، گذر میرزا محمود وزیر ، گذر نوروزخان و البته از همۀ اینها معروفتر و مصطلح تر، گذر لوطی صالح.




پل

پل، سازه ای است فلزی، بتنی و یا با مصالح ساختمانی برای عبور راه، راه‌آهن و یا پیاده، از روی آب و یا مسیر راهی دیگر.

در تعریف قدیمی چنین می‌گفتند که پل طاقی است بر روی رودخانه، دره، یا هر نوع گذرگاه که رفت‌وآمد را ممکن می‌سازد. اما امروزه در مبحث مدیریت شهری، پل را سازه‌ای برای عبور از موانع فیزیکی قلمداد می‌کنند تا ضمن استفاده از فضا (نه صرفا سطح زمین) بتواند عبورومرور و دسترسی به اماکن را تسهیل کند.

یکی از عناصر پل‌سازی تیرهای سراسری هستند.





بزرگترین پل ایران

پل شهید کلانتری طولانی‌ترین پل ساخته‌شده در ایران (سه برابر طولانی‌ترین پل پیشین) به طول هزار و هفتصد و نه متر می‌باشد که بر روی دریاچه ارومیه ساخته شده‌است و فاصله میان دو شهر تبریز و ارومیه به 135 کیلومتر تغییر داده‌است. این پل در ۲۷ آبان سال ۱۳۸۷ به بهره‌برداری رسید.





انواع پل‌ها

پل قوسی
پل فلزی
پل بتنی مسطح
پل بازویی
پل کابلی
پل نظامی
پل معلق
پل تشریفاتی
پل سواره‌رو
پل هوایی


پل مسطح

ساده ترین نوع پل است که اجزای اصلی آن عبارتند از یک ورقه ی مسطح و پایه هایی است که در طول پل مستقر شده اند و وزن پل و بار روی پل را به زمین منتقل میکنند. این پل ها به علت طراحی ساده و اولیه ای که دارند و مصالح کمی که در فواصل کوتاه لازم دارند به تعداد زیاد در روستا ها مورد بهره بهداری قرار میگیرند .





پل قوسی

پل قوسی، پلی است با تکیه گاه‌های انتهائی در هر طرف، که شکلی نیم دایره مانند دارد. پلی که از رشته‌ای از قوسها تشکیل شده باشد، پل دره‌ای نامیده می‌شود. پل قوسی ابتدا توسط یونانی‌ها و از سنگ ساخته شد. بعدها، مردم باستان از ملات در پل‌های قوسی خود استفاده کردند.

با توجه به اصول مقاومت مصالح، شعاع قوس وابعاد این پلها را طوری انتخاب می‌کنند که بارهای قائم وارده تبدیل به یک نیروی فشاری در امتداد قوس شود. بنا براین در مناطقی با کیفیت خاک مناسب، می‌توان دهانه‌های بزرگ (تا حدود ۵۰۰ متر) را با پلهای قوسی طی نمود.




پل کابلی
تاریخچه پل کابلی‎

با اینکه به نظر می‌رسد پل‌های کابلی به آینده چشم دوخته‌اند، ایده آن‌ها مسیر طولانی را پیموده‌است. اولین طرح شناخته شده از یک پل کابلی در کتابی به نام "ماشین‌های نوواً - منتشر شده در سال ۱۵۹۵ - آورده شده ولی این ایده تا قرن حاضر که مهندسان شروع به استفاده از پل‌های کابلی نمودند؛ مورد استقبال واقع نشده بود. در جنگ جهانی دوم که فولاد کمیاب بود، این طرح برای بازسازی پل‌های بمباران شد که هنوز فوندانسیون هایشان پابرجاست، کامل بود. با اینکه از احداث پل‌های کابلی در آمریکا دیری نمی‌گذرد، واکنش‌ها در این مورد بسیار مثبت بوده‌است.




پل کابلی و نحوه عملکرد آن

یک پل کابلی نوعی، یک تیر حمال(عرشه پل) پیوسته با یک یا چند برج بنا شده بالای پایه‌های پل در وسط دهانه‌است. از این برج‌ها، کابل‌ها به صورت اریب به سمت پایین (معمولاً هر دو طرف) کشیده شده و تیر حمال(عرشه پل) را نگه می‌دارد. کابل‌های فولادی بی نهایت قوی و در عین حال بسیار انعطاف پذیر هستند. کابل‌ها بسیار مقرون به صرفه می‌باشند چون سبب ساخت سازه‌ای سبکتر و باریکتر شده که در عین حال قادر به پل زدن بین مصافت‌های بیشتری است.اگرچه تنها تعداد کمی از آن‌ها برای نگه داشتن کل پل قوی هستند، انعطاف پذیریشان آن‌ها را در مقابل نیروهایی که به ندرت در نظر گرفته می‌شوند مانند باد؛ ضعیف می‌نماید. برای پل‌های کابلی با دهانه‌های طولانی به خاطر تضمین ثبات و پایداری کابل‌ها و پل در مقابل باد، می‌بایست مطالعات دقیقی انجام شود. وزن سبکتر پل یک وضع نامساعد در بادهای سهمگین و یک مزیت در مقابل زلزله محسوب می‌شود. نشست غیر هم سطح فوندانسیون‌ها که به مرور زمان یا طی یک زلزله روی می‌دهد، می‌تواند پل کابلی را دچار آسیب کند. پس باید در طراحی فوندانسیون‌ها دقت به عمل آورد. ظاهر مدرن و در عین حال ساده پل کابلی آن را به یک شاخص واضح و جذاب تبدیل کرده‌است. خصوصیات منحصر به فرد کابل‌ها و به طور کلی سازه، طراحی پل را بسیار پیچیده می‌نماید. برای دهانه‌های طولانی تر، جایی که باد و نوسانات باید مورد توجه قرار گیرند؛ محاسبات بی نهایت پیچیده‌اند و عملاً بدون کمک کامپیوتر و آنالیز کامپیوتری غیر ممکن می‌باشند. علاوه بر این ساخت پل کیده‌ای مشکل می‌باشد. اتصالات، برج‌ها، تیرهای حمال و مسیر کابل‌ها سازه‌های پیچیده‌ای هستند که مستلزم ساخت دقیق می‌باشند.




طبقه‌بندی پل‌های کابلی

طبقه‌بندی واضحی برای پل‌های کابلی وجود ندارد. به هر حال آن‌ها می‌توانند توسط تعداد دهانه‌ها، برج‌ها و کابل‌ها و همچنین نوع تیرهای حمال از یکدیگر تمیز داده شوند. تنوع بسیاری در تعداد و نوع برج‌ها و همچنین تعداد و چینش کابل‌ها وجود دارد. برج‌های نوعی به صورت تکی، دوتایی، دروازه‌ای و یا حتی برج‌های A شکل استفاده شده‌اند. علاوه بر این چینش کابل‌ها به طور عمده‌ای متفاوت می‌باشند. بعضی اقسام دارای چینش تکی، چنگی(موازی)، پنکه ای(شعاعی) و ستاره‌ای هستند. در بعضی موارد تنها کابل‌های یک طرف برج به عرشه وصل می‌شوند و طرف دیگر روی یک فندانسیون یا وزنه برابری لنگر می‌اندازند.

پلهای کابلی عمدتا به دو بخش ترکه ای و معلق تقسیم بندی می شود.پل های معلق در دهانه های خیلی بزرگ به کار می روندترکیب این پلها عبارت است از دو عددپایه بلند که در دو طرف دهانه قرار دارد و دو دسته کابل که با عبور از بالای پایه ها در دهانه آویزان است و دو انتهای کابل ها در تکیه گاه ثابتی که معمولا بلوک های حجیم بتنی هستند مهار میشود و عرشه توسط تعدادی آویز قائم آویخته می شود.پل های معلق مدرن برای دهانه های بیش از 300متر اقتصادی بوده و اگر عرشه فلزی که سبکتر از نوع بتنی میباشد استفاده شود مقرون به صرفه تر است.پلهای ترکه ای به علت سختی وزیبایی و اقتصاد طرح و سهولت اجرا از سال 1950 میلادی رواج زیادی یافت .اصل اساسی در بررسی رفتار پلهای ترکه ای این است که توسط کابل های متعددی به یک پایه بلند نصب شده اند و دهانه پل در نقاط متعددی گرفته میشود .در این پلها عرشه به صورت صلب از یک طرف روی کوله های پایه ها و از طرف دیگر با کابلها مهار میشوند.پایه های میانی پل به شکل H A I بوده است پلهای ترکه ای با عرشه بتنی تا دهانه های 100ال 700 متر اقتصادی بوده است.ارسال از امید اسداللهی دانشجویی رشته مهندسی راهسازی دانشگاه راه و ترابری.




مزایای و تفاوت‌های پل کابلی

برای طول متوسط دهانه‌ها (۱۵۰ تا ۸۵۰ متر) پل کابلی سریعترین انتخاب مناسب برای یک پل می‌باشد. نتیجه یک پل مقرون به صرفه‌است که زیبایی آن غیر قابل انکار است. همچنین پل کابلی بهترین پل برای طول دهانه بین پلهای بازویی و معلق می‌باشد. در این محدوده طول دهانه، یک پل معلق مقدار بسیار بیشتری کابل نیاز خواهد داشت و این در حالی است که یک پل بازویی کامل، به طور قابل ملاحضه‌ای به مصالح بیشتر نیاز دارد که آن را به مقدار چشمگیری سنگین تر می‌نماید. ممکن است به نظر برسد پل کابلی شبیه پل معلق است. با اینکه هر دو دارای عرشه هستند که از کابل‌ها آویزانند و هر دو دارای برج هستند؛ ولی این دو پل بار عرشه را به طرق بسیار متفاوتی نگه می‌دارند. این اختلافات در چگونگی اتصال کابل‌ها به برج می‌باشد. در پل معلق کابل‌ها آزادانه از این سر تا آن سر دو برج کشیده شده‌اند و انتقال بار به تکیه گاه‌های واقع در هر انتها صورت می‌گیرد. در پل کابلی، کابل‌ها در حالی که به برج‌ها متصلند به تنهایی بار را تحمل می‌کنند. در مقایسه با پل‌های معلق، پل کابلی به کابل کمتری نیاز دارد، می‌توان آن را از قطعات بتن پیش ساخته مشابه ساخت و همچنین احداث آن سریع تر است.




مهار کابلی چگونه کار می‌کند؟

بایستید و دستان خود را به صورت افقی در هر طرف دراز کنید. فرض کنید آن‌ها پل هستند و سرتان نیز برجی در وسط آن است. در این موقعیت ماهیچه‌های شما دستانتان را نگاه می‌دارد. سعی کنید یک مهار کابلی برای نگه داشتن دستانتان بسازید. یک تکه طناب به طول حدودی ۱۵۰ سانتیمتر بردارید. از یک دستیار بخواهید هر یک از دو انتهای طناب را به هر یک از آرنج هایتان ببندد. سپس وسط طناب را روی سر خود قرار دهید. اینک طناب مانند یک مهار کابلی عمل می‌کند و آرنج هایتان را بالا نگه می‌دارد. از دستیارتان بخواهید تکه طناب دیگری به طول حدودی ۱۸۰ سانتی متر را این بار به مچهایتان ببندد. طناب دوم را روی سرتا ن قرار دهید. حالا شما صاحب دو مهار کابلی هستید. فشردگی و فشار نیرو را در کجا احساس می‌کنید؟ ببینیدتاتن مهار کابلی چگونه بار پل (دست هایتان) را به برج (سر شما) منتقل می‌کند!




پل‌های تشریفاتی
جهت زیباتر شدن، بعضی پلها با ارتفاع بیشتر از حد نیاز ساخته می‌شوند. این نوع پل که بیشتر در باغهای نمادین موجود در شرق آسیا ساخته شده‌است، پل ماه(Moon Bridge)نیز خوانده می‌شود(از آنجایی که این نوع پل یادآور چگونگی حرکت ماه در آسمان است). بعضی این پل‌های موحود در این باغها ممکن است فقط روی یک سری بستر رودهای خشک که جربان آب سنگ ریزه‌های ته رود را شسته‌است گذر کنند. در قصرها اغلبا این پلها بر روی آبراهای مصنوعی به عنوان سمبل یک مسیر خاص به یک مکان خیلی مهم یا یک مکان خیالی و فرضی ساخته شده‌اند. برای نمونه 5 پل در شهر ممنوعه در پکن(پایتخت چین) بر روی یک سری آبراه پر پیج خم ساخته شده‌اند که پل مرکزی تنها جهت عبور امپراطور، همسر امپراطور و فرزندانشان بوده‌است.






پل قوسی
پل قوسی (به انگلیسی: Arch Bridge)، نوعی پل است که در قسمت انتهایی دارای تکیه‌گاه‌هایی به شکل قوس منحنی است. پل قوسی، وزن خود پل و بارهای وارده به آن را به صورت نیروی افقی -که توسط تکیه‌گاه‌ها مهار شده‌اند- منتقل می‌کند. یک پل راه‌آهن، ممکن است با استفاده از سلسله‌ای از پل‌های قوسی ساخته شود. با این حل، سازه‌های دیگری که اقتصادی‌تر هستند، امروزه کاربرد بیشتری دارند.





پل معلق

پل معلق پلی است که عرشهٔ آن از کابل‌های معلق آویزان شده باشد. تاریخ این نوع پل‌ها به اوایل قرن ۱۹ باز میگردد.

این نوع پل‌ها دارای کابل‌های معلق بین برجها، همراه با کابل‌های معلق عمودی هستند که وزن عرشه را تحمل میکنند.






سازه فولادی

سازه فولادی نوعی سازه است که مصالح اصلی آن که برای تحمل نیروها و انتقال آنها به کار می‌رود از فولاد است. اتصالات به کار رفته در این نوع سازه‌ها از نوع جوشی، پرچی و یا پیچ می‌باشد و بسته به نوع اتصالات قطعات طرح شده و کنترل‌های مربوطه بر روی آنها انجام می‌شود.

در حال حاضر فولاد از مهمترین مصالح برای ساخت ساختمان و پل و سایر سازه‌های ثابت است مقاومت فولاد (تنش تسلیم) مورد استفاده در بازه۲۴۰۰ تا ۷۰۰۰ kgr/cm ۲ است که برای ساختمانهای معمولی از فولاد با مقاومت ۲۴۰۰ که به آن فولاد نرمه گفته می‌شود استفاده می‌گردد.




نقش فولاد در ساختمان

فولاد یکی از مهمترین مصالح ساختمانی به شمار می‌آید. فولاد از احیا شدن سنگ آهن، به همراه کک و اکسیژن در کوره‌های بلند با درجه حرارت زیاد بدست می اید. آهن خام که به این ترتیب به دست می‌آید بین ۳ تا ۴ درصد کربن دارد.




مشخصات مکانیکی فولاد

مهمترین مشخصه مکانیکی فولاد نمودار تنش _ کرنش آن می‌باشد که از روی آن تنش تسلیم و یا تنش جاری شدن بدست می‌آید.

فولاد بعنوان ماده‌ای با مشخصات خاص و منحصر بفرد، مدتهاست در ساخت ساختمانها کاربرد دارد. قابلیت اجرای دقیق، رفتار سازه ای معین، نسبت مقاومت به وزن مناسب، در کنار امکان اجرای سریع سازه‌های فولادی همراه با جزئیات و ظرافتهای معماری، فولاد را بعنوان مصالحی منحصر و ارزان در پروژه‌های ساختمانی مطرح نموده است؛ به نحوی که اگر ضعفهای محدود این ماده نظیر مقاومت کم در برابر خوردگی و عدم مقاومت در آتش‌سوزیهای شدید به درستی مورد توجه و کنترل قرار گیرند، امکانات وسیعی در اختیار طراح قرار می‌دهد که در هیچ ماده دیگر قابل دستیابی نیست. فولاد، آلیاژ ی از آهن و کربن است که کمتر از ۲ درصد کربن دارد. در فولاد ساختمانی عمومأ در حدود ۳ درصد کربن و ناخالصیهای دیگری مانند فسفر، سولفور، اکسیژن و نیتروژن و چند ماده دیگر موجود می‌باشد. ساخت فولاد شامل اکسیداسیون و جدانمودن عناصر اضافی و غیر ضروری موجود در محصول کوره بلند و اضافه کردن عناصر مورد نیاز برای تولید ترکیب دلخواه است. برای ساخت فولاد، از چهار روش اصلی استفاده می‌شود. این روشها عبارتند از: روش کوره باز، روش دمیدن اکسیژن، روش کوره برقی، روش خلاء.

آنچه فولاد را به عنوان یک مصالح ساختمانی مناسب معرفی کرده می‌تواند شامل موارد زیر باشد:

تغییر شکل در اثر بارگذاری و ایجاد تنش یکنواخت
وجود خاصیت الاستیک و پلاستیک
شکل پذیری
خاصیت چکش خواری و تورق
خاصیت خمش پذیری
خاصیت فنری و جهندگی
خاصیت چقرمگی
خاصیت سختی استاتیکی و دینامیکی
مقاومت نسبی بالا
ضریب ارتجاعی بالا
جوش پذیری
همگن بودن
امکان استفاده از ضایعات
امکان تقویت مقاطع در صورت نیاز

دسته‌بندی

سازه‌های فولادی به سه دسته تقسیم می‌شوند

سازه‌های قاب بندی شده:که مجموعه‌ای از اعضای محوری، خمشی و یا محوری خمشی اند.
سازه‌های پوسته‌ای: منابع تگهداری مایعات و گازها که نیروی محوری حاکم است.
سازه‌های معلق: که در آن نیروی کششی حاکم است.

منظور از سازه‌های فولادی در عمران معمولاً سازه‌های قاب بندی شده است. نقش قاب در ساختمان انتقال بارهای مرده و بار زنده و زلزله و بار برف از سازه به پی می‌باشد. و پایداری کلی سازه راحفظ می‌کند.

برای ساخت سازه‌های ساختمانی بیشتر از پروفیل‌های نورد شده استفاده می‌شود اگر ابعاد طراحی شده مقادیر دیگری باشد می‌توان با استفاده از ورق‌های موجود در بازار پروفیل مربوطه را تهیه کرد.




طراحی ساختمانهای فولادی

انتخاب نوع مقطع، روش ساخت، روش بهره‌برداری و محل ساخت ساختمان، خصوصیات و ویزگیهای متنوعی برای ساخت اسکلت باربر یک ساختمان بوجود می‌آورد. مزیتهای هر سیستم سازه ای و مصالح مورد نیاز آن سیستم را در صورتی می‌توان بکار برد که خصوصیات و ویژگیهای آن مصالح و سیستمها در مرحله طراحی به حساب آورده شود و طراح باید در مورد هر یک از مصالح به درستی قضاوت کند. این موضوع بویژه در ساختمانهایی که اسکلت فولادی دارند ضروری است. معیارهای سازه ای زیر اهمیت زیادی در طراحی کلی و ستون گذاری ساختمان دارد: - نوع مقطع - آرایش و روش قرار گیری مقاطع - فواصل تکیه گاهی - اندازه دهانه‌های سقف - نوع مهاربندی - نوع سیستم صلب کننده - محل قرارگیری سیستم صلب کننده (سیستم فضاسازی داخلی)

برای استفاده بهینه از خواص مطلوب ساختمانهای فولادی، سیستم فضاسازی داخلی باید بگونه‌ای اختیار شود که

متشکل از قطعات پیش ساخته باشد، بدین منظور که سرعت بیشتر نصب و برپایی سازه، موجب کوتاه شدن زمان کلی ساخت می‌شود.


قطعات سبک باشد تا وزن کلی ساختمان به حداقل ممکن برسد.
نوع سیستم انتخاب شده، سازگار با سیستم سازه‌ای انتخاب شده باشد.
با یک روش اقتصادی قابل محافظت در برابر آتش باشد.




فضاهای داخلی ساختمان فلزی معمولأ شامل:

سقفها

بام

دیوارهای خارجی

دیوارهای داخلی

سیستم رفت و آمد (پله و آسانسور) می‌باشد که با هماهنگی دقیق و علمی این امکان بوجود می‌آید که اقتصادی ترین روش ساخت و اجرای ساختمان بدست آید.



طراحی با توجه به روش مهاربندی

تمام ساختمانها باید برای مقاومت در برابر نیروی زلزله و باد و یا دیگر نیروهای افقی صلب شوند سیستم صلب کننده باید:

نیروهای جانبی را به فونداسیون منتقل کند.

تغییر مکانهای افقی را محدود کند.



در ساختمانهای بلند باید ملاحظات ویژه‌ای برای جلوگیری از ایجاد نوسانات ناشی از باد در نظر گرفته شود. بزرگی نیروهای افقی اعمال شده در اثر باد به عوامل زیر بستگی دارد:

سرعت باد

شکل آیرودینامیکی ساختمان

وضعیت سطح نما

روشهای صلب کردن



یک قاب سازه‌ای فولادی را می‌توان به یکی از روشهای زیر مهاربندی کرد:

سیستمهای قاب صلب

سیستمهای قاب بادبندی

دیوارهای بتنی بصورت دیوارهای برشی یا هسته‌های بتنی

انتخاب روش صحیح مهاربندی، اهمیت عمده‌ای در طراحی سازه‌ای دارد و حتی ممکن است کل اندیشه طراحی یک ساختمان بلند مرتبه را تحت تاثیر قرار دهد. مهار بندی به وسیله اعضای بادبندی یا دیوارهای بتنی به صورت دیافراگم صلب، نقاط ثابتی را در ساختمان ایجاد می‌کند، به گونه‌ای که آزادی عمل در جانمایی و معماری داخل ساختمان را محدود می‌کند.




طراحی با توجه به اجزای تشکیل دهنده فضاهای داخلی ساختمان

انتخاب سیستم مناسب برای اجزای داخلی ساختمان به عوامل مختلفی بستگی دارد. روشهای زیر به طور رایج در ساخت سقفهای متکی به تیرهای فولادی به کار می‌روند:

دال بتنی درجا بر روی قالب مناسب

دال بتنی پیش ساخته

عرشه فولادی با بتن درجا

عملکرد مرکب بین دال بتنی و تیر فولادی که در هر سه روش امکان‌پذیر است، سبب اقتصادی شدن ساخت می‌گردد. مسئله حفاظت قسمتهای فولادی سقف در برابر آتش‌سوزی باید در اجرای سقف در نظر گرفته شود. استفاده از سقف کاذب می‌تواند این کار را به خوبی انجام دهد. در سازه‌های اسکلت فلزی، معمولأ دیوارهای خارجی باربر نیستند، برای ساخت این دیوارها، بنابر شرایط موجود، از مصالح مختلف استفاده می‌شود.




لزوم محافظت در برابر حریق، خوردگی و عایق بندی صوتی

اغلب اظهار می‌شود که هزینه لازم برای محافظت ساختمانهای فلزی در برابر آتش‌سوزی و خوردگی و عایق بندی صوتی بسار زیاد است، ولی استفاده از راههای معقول و مناسب برای هر ساختمان، با توجه به سیستم بکار رفته در آن، می‌تواند باعث کاهش این هزینه شود. ایجا یک سیستم محافظت در برابر آتش‌سوزی در تمام ساختمانهای فلزی لازم و ضروری است. آنچه از اقتصادی در این مسئله حائز اهمیت است، استفاده از روش صحیح حفاظت اجزای فلزی است. اغلب المانهای داخلی ساختمان مانند سقف و دیوارهای داخلی و خارجی آن بعنوان یک سیستم محافظت در برابر آتش‌سوزی در ساختمان قابل استفاده است. تیرها و ستون‌های فلزی می‌تواند به روش مناسب در بین این اجزا مدفون شود. در غیر اینصورت باید با روش مناسب اسکلت فولادی ساختمان محافظت شود.

از آنجایی که زنگ زدگی در قطعات داخلی ساختمان فولادی با توجه به رطوبت ناچیز موجود در هوا بعید به نظر می‌رسد، محافظت در برابر خوردگی برای این قطعات یک مشکل جدی محسوب نمی‌شود. بنابراین حفاظت در برابر خوردگی فقط برای قطعات بیرونی و اجزایی که در معرض رطوبت هوا قرار دارند لازم و ضروری است.

مشخصات صوتی یک ساختمان، بستگی به خواص اجزای داخلی آن دارد مانند نوع سقف و سیستم دیوارهای جداکننده و تیغه‌ها. در این بین، سیستم اسکلت باربر ساختمان نقش کمتری دارد رفتار اسکلت یک ساختمان بتنی و فولادی، با یک سیستم فضاسازی داخلی مشابه، یکسان است.





توجیه اقتصادی سازه‌های فولادی

در ارزیابی اقتصادی یک ساختمان فولادی، فقط در نظر گرفتن قیمت مصالح ساختمانی و نیروی انسانی کفایت نمی‌کند و بقیه عوامل موثر در این موضوع باید مورد بررسی قرار گیرد. موارد زیر در اقتصاد یک ساختمان موثر است

قیمت زمین: بدلیل کوچک بودن مقاطع عرضی در ساختمانهای فولادی، فضای کمتری توسط اسکلت سازه اشغال شده و در مقایسه با سازه‌های بتنی، ساختمانهای فلزی در پلان دارای سطح موثر بیشتری هستند. بنابراین هزینه زمین در هر متر مربع مفید ساختمان، در ساختمانهای فلزی کمتر خواهد بود.





مصالح در دسترس
ارزش نهایی ساختمان: هرچه مدت زمان ساخت یک ساختمان کوتاهتر باشد، هزینه نهایی آن ساختمان کمتر خواهد بود. با توجه به روشهای مختلف ساخت سازه، متوجه می‌شویم که در مقایسه با سایر روشها، ساخت سازه‌های فلزی زمان کمتری صرف می‌کند.
هزینه اسکلت اصلی سازه (سفت کاری)
تاثیر نازک کاری
تاثیر نصب تجهیرات و تاسیسات
نحوه تاثیر این عوامل در بهره‌برداری بهینه از ساختمان
هزینه ایجاد تغییرات داخلی و بهسازی در ساختمان
هزینه تخریب (در ساختمانهای با عمر کوتاه)




میزان مصرف فولاد در ساختمانهای فلزی

در ساختمانهای فلزی، هزینه با توجه به میزان مصرف فولاد در هر متر مربع مساحت کف (تصویر افقی) یا متر مکعب ساختمان محاسبه می‌شود. هزینه ساخت و میزان مصرف فولاد به عوامل زیر بستگی دارد:

تعداد طبقات
بار اعمال شده به طبقات
دهانه‌ها در اطراف ستون
ضخامت سقف
سیستم سازه‌ای (سیستم انتقال بارهای قائم و جانبی)




انتقال بار در سازه‌های فولادی

سازه‌های فولادی مشتمل بر تعدادی تیر و ستون به شکل قاب و نیز شامل تعدادی تقویت کننده، به منظور ایستایی بیشتر می‌باشد. بدیهی است انتقال بارهای افقی و قائم از طریق این اجزاء صورت می‌گیرد. به این صورت که:

سقف، بارهای عمودی را تحمل کرده و بصورت افقی، از طریق تیرها به تکیه گاههای تیر منتقل می‌کند.
سیستم باربر قائم (ستون‌ها)، بارها را از تکیه گاههای دو سر تیر به فونداسیون انتقال می‌دهد.
همچنین سیستم‌های مهاربندی قائم و افقی، بارهای جانبی ناشی از باد، زلزله، فشار زمین و ... را به فونداسیونها منتقل می‌نمایند.

ماهیت انتقال بار از طریق تیرها به تکیه گاهها و روش قرارگیری تیرها (تیر ریزی) به عوامل زیر بستگی دارد

نوع مقطع قابل استفاده با توجه به طراحی معماری
فواصل تکیه گاهها و طول دهانه تیر با توجه به طراحی سازه‌ها
روش انتقال بار توسط اجزای باربر
سیستم تکیه گاهی انتخاب شده (صلب، نیمه صلب، ساده)

تعریف ستون فلزی

ستون عضوی است که معمولأ به صورت عمودی در ساختمان نصب می‌شود و یارهای کف ناشی از طبقات به وسیله تیر و شاهتیر به آن منتقل می‌گردد و سپس به به زمین انتقال می‌یابد.




شکل ستون‌ها

شکل سطح مقطع ستون‌ها معمولا به مقدار و وضعیت بار وارد شده بستگی دارد. برای ساختن ستون‌های فلزی از انواع پروفیلها و ورقها استفاده می‌شود.




عموما ستون‌ها از لحاظ شکل ظاهری به دو گروه تقسیم می‌شوند

نیمرخ (پروفیل) نورد شده شامل انواع تیرآهن‌ها و قوطی‌ها: بهترین پروفیل نورد شده برای ستون، تیرآهن با پهن یا قوطیهای مربع شکل است؛ زیرا از نظر مقاومت بهتر از مقاطع دیگر عمل می‌کند. ضمن اینکه در بیشتر مواقع عمل اتصالات تیرها به راحتی روی آنها انجام می‌گیرد.
مقاطع مرکب: هرگاه سطح مقطع و مشخصات یک نیمرخ (پروفیل) به تنهایی برای ایستایی (تحمل بار وارد شده و لنگر احتمالی) یک ستون کافی نباشد، از اتصال چند پروفیل به یکدیگر، ستون مناسب آن (مقاطع مرکب) ساخته می‌شود.
page1 - page2 - page3 - page4 - page5 - page7 - page8 - | 6:05 pm
فیزیولوژی ورزشی

فیزیولوژی ورزشی به ۴ بخش فراگیر تقسیم می‌شود: آمادگی جسمانی، فیزیولوژی ماهیچه‌ها، فیزیولوژی گردش خون،






فیزیولوژی تنفس

بدن انسان برای اینکه بتواند نقش خود را به طور مؤثر در زندگی ایفا کند باید از آمادگی جسمانی خوبی برخوردار باشد یعنی به طور مداوم انرژی لازم را در اختیار داشته باشد تا بتواند وظایف خود را به نحو احسن انجام دهد. وقتی سخن از آمادگی جسمانی به میان می‌آید مقصود از آن داشتن چنان قلب، رگ‌های خونی و شش‌ها و ماهیچه‌هایی است که بتوانند وظایف خود را به خوبی انجام دهند و با شور و نشاط تمام در فعالیت‌ها و تفریحات سالمی شرکت کنند که افراد عادی و غیر فعال از انجام آنها ناتوانند. عوامل متعددی در آمادگی جسمانی مؤثر است اما چهار عامل بیش از عوامل دیگر در این میان ایفای نقش می‌کنند این عوامل عبارت‌اند از (نیروی ماهیچه، استقامت ماهیچه، انعطاف ماهیچه و استقامت قلبی ریوی) می باشد.



نیروی ماهیچه
همانطور که می‌دانید حدود ۴۰ درصد وزن بدن را ماهیچه تشکیل می‌دهد این ماهیچه‌ها در خود تولید انرژی می‌کنند که این نیرو، نیروی ماهیچه نامیده می‌شود که البته قابل اندازه‌گیری نیز هست. مهم‌ترین عامل شناخته شده در آمادگی جسمانی استعداد و توانایی ماهیچه‌ها در وارد کردن نیرو یا مقاومت در برابر آن است. تمرینات قدرتی از عواملی است که سبب حجیم شدن تارهای ماهیچه‌ای می‌شود و توانایی فرد را در تولید نیروی بیشتر افزایش می‌دهد، این افزایش می‌تواند به دلایل عصبی (فراخوانی تارهای بیشتر و تحریک واحدهای عصبی-ماهیچه‌ای بزرگتر)باشد یا به دلیلی مثل افزایش رها سازی یون کلسیم یا افزایش تماس تارهای اکتین و می‌وزین. قدرت ماهیچه اهمیت بسیاری در ورزشهای مختلف و البته فعالیت‌های روزانه دارد بسیاری از مردان و حتی زنان از ماهیچه‌ها بازو و سرشانه ضعیفی برخوردار هستند که باعث ضعف در فعالیت‌های ورزشی و روزانه و ایجاد درد و بیماری در سنین بالا می‌شود..



استقامت ماهیچه
ماهیچه‌ها در خود انرژی ذخیره می‌کنند. این عمل به ماهیچه‌ها امکان می‌دهد که مدت زیادی به فعالیت خود ادامه دهند. این عمل ماهیچه‌ها را استقامت ماهیچه‌ای گویند. استقامت ماهیچه‌ای عبارت است از ظرفیت یک ماهیچه یا گروهی از ماهیچه‌ها برای انقباض مداوم. معمولاً استقامت ماهیچه را با قدرت ماهیچه‌ای اشتباه می‌گیرند ولی باید توجه کرد که معمولاً استقامت ماهیچه‌ای عبارت است از توانایی در کاربرد قدرت و نگهداری این توانایی برای مدت نسبتاً طولانی. برای مثال در فعالیت‌هایی چون: برف پارو کردن، چمن زدن، نظافت و یا حرکات ورزشی چون دراز و نشست، بالا کشیدن بدن در حالت بارفیکس و... استقامت ماهیچه‌ای نقش اساسی دارد که می‌شود با تمرینات منظم ورزشی آن را افزایش داد.



انعطاف ماهیچه
توانایی در کاربرد ماهیچه‌ها در وسیعترین دامنه حرکت آنها به دور مفصلها را انعطاف پذیری گویند. این عامل در آمادگی جسمانی از اهمیت ویژه‌ای برخوردار است. با تمرینات ورزشی میزان توانایی مفاصل بدن در خم شدن و چرخیدن بیشتر می‌شود و در نتیجه کارایی ماهیچه‌ها بهبود می‌یابد اگر مفاصل از انعطاف کمی برخوردار باشند محدودیت حرکتی برای بدن ایجاد می‌شود. انعطاف پذیری در فعالیت‌های روزانه چون باغبانی، خانه داری، فعالیت‌های ورزشی که احتیاج به نرمی و انعطاف پذیری دارند مؤثر است. که البته این نقش در فعالیت‌های ورزشی چون ژیمناستیک، دو و میدانی و... پر رنگ تر می‌شود.



استقامت قلبی و ریوی
بسیاری از دانشمندان و صاحب نظران ورزشی عقیده دارند که عامل استقامت قلبی ریوی در آمادگی جسمانی بیش از عوامل دیگر اهمیت دارد و بعضی دیگر دقیقاً بر عکس این نظریه مهر تأیید زدند. اما تجربه نشان داده‌است که استقامت قلبی ریوی از عوامل اساسی آمادگی جسمانی است و با تمرینات استقامتی شدید و سنگین می‌توان آن را ارتقاء بخشید.




فیزیولوژی ماهیچه

ماهیچه‌ها دستگاهی هستند که مواد غذایی را از صورت شیمیایی به صورت انرژی مکانیکی یا کار تبدیل می‌کنند. می‌دانیم که حرکات بدن از انقباض ماهیچه‌ها حاصل

در بخش ماهیچه‌ها مخطط ۲ مطلب را بررسی می‌کنیم: ۱- انقباض ماهیچه، ۲- منابع انرژی ماهیچه.

انقباض ماهیچه: اگر طول ماهیچه به هنگام انقباض تغییر نکند این انقباض را (هم طول) می‌گویند. در این نوع انقباض جسم مقاوم جابه جا نمی‌شود تمام انرژی حاصل از انقباض به حرارت تبدیل می‌شود. ولی اگر انقباض ماهیچه به کوتاه شدن آن منجر شود آن انقباض را (هم تنش) می‌گویند که باعث می‌شود جسمی که در برابر ماهیچه قرار می‌گیرد جابه جا شود. سرعت انقباض ماهیچه با مقدار وزنه‌ای که در مقابل آن قرار می‌گیرد رابطه عکس دارد. اگر هیچ نیرویی در برابر ماهیچه قرار نگیرد ماهیچه سریعاً منقبض می‌شود ولی اگر به تدریج نیروی مخالف افزایش می‌یابد از سرعت انقباض کاسته می‌شود. تا اینکه اگر میزان نیروی مخالف برابر با نیروی ماهیچه شود سرعت کوتاه شدن یا انقباض به صفر خواهد رسید.



منابع تامین انرژی

ماهیچه برای آنکه به حالت انقباض درآید احتیاج به انرژی دارد. منبع اصلی انرژی ماهیچه آدنوزین تری فسفات است که به مقدار کمی در ماهیچه وجود دارد ولی به مقدار زیادی انرژی آزاد می‌کند. کراتین فسفات منبع انرژی دیگری است که در سلولهای ماهیچه‌ای ذخیره می‌شود. اگر مقدار آدنوزین تری فسفات در سلول بیش از اندازه لازم باشد انرژی اضافی صرف تولیدکراتین فسفات می‌شود و در نتیجه مقدار بیشتری از انرژی ذخیره خواهد شد. به مجرد ذخیره آدنوزین تری فسفات در ماهیچه کراتین فسفات موجود به سرعت و سهولت به آدنوزین تری فسفات تبدیل می‌شود و در نتیجه کراتین فسفات باعث ثابت ماندن مقدار آدنوزین تری فسفات ماهیچه می‌شود. انرژی حاصل از کراتین فسفات و آدنوزین تری فسفات برای مدت کوتاهی انرژی لازم را تأمین می‌کنند پس در فعالیت‌های شدید بدنی که بیش از چند دقیقه طول می‌کشد باید منبع دیگری از انرژی وجود داشته باشد. این انرژی از تجزیه گلیگوژن حاصل می‌شود و چون این واکنش در مجاورت اکسیژن قرار می‌گیرد آن را هوازی یا (با اکسیژن) می‌گویند. اگر اکسیژن به اندازه کافی برای این واکنش‌های شیمیایی وجود نداشته باشد در ماهیچه اسیدلاکتیک تولید می‌شود. قسمت اعظم این اسیدلاکتیک مجدداً به گلوکز و گلیگوژن تبدیل می‌شود و مقداری از آن در ماهیچه بر جای می‌ماند. در ورزشهای سخت و طولانی و مخصوصاً افرادی که از آمادگی جسمانی کمی برخوردارند خستگی ماهیچه‌ها بعد از ورزش مربوط به اسیدلاکتیک باقی‌مانده در ماهیچه‌است، میزان خستگی با مقدار اسیدلاکتیک موجود در ماهیچه رابطه مستقیم دارد.

تولید انرژی در بدن به ۳ طریق انجام می‌گیرد که ۲ طریق آنها برای تولیدآدنوزین تری فسفات نیاز به اکسیژن ندارند (بی هوازی) و در سومین طریقه وجود اکسیژن کاملاً ضروری است که به آن (هوازی) گویند:



سیستم تامین انرژی فسفاژن ATP-Pc
در ورزشهایی چون: پرتاب نیزه، پرتاب دیسک، دو ۱۰۰ متر و شیرجه یا فعالیتهایی که زمان اجرای آن بسیار کم است (حدود ۱۰ ثانیه) و با حداکثر شدت انجام می‌شوند انرژی مورد نیاز را از این سیستم تأمین می‌کنند. آدنوزین تری فسفات وکراتین فسفات موجود در ماهیچه به صورت ذخیره وجود دارند و به هنگام فعالیت انرژی مورد لزوم را تهیه می‌کنند. در این سیستم برای تأمین انرژی احتیاجی به حضور اکسیژن نیست (بی هوازی)





سیستم تامین انرژی بی هوازی(اسیدلاکتیک)
در ورزشهایی که زمان اجرای آنها بین ۱ تا ۳ دقیقه طول می‌کشد انرژی مورد نیازشان را از این طریق تأمین می‌کنند مثل دوهای ۴۰۰ و۸۰۰ متر وکشتی. هنگام اجرای این فعالیت‌ها اکسیژن به قدر کافی در ماهیچه موجود نیست از اینرو گلوکز موجود در ماهیچه به اسیدلاکتیک و آدنوزین تری فسفات تبدیل می‌شود. در حقیقت در این سیستم گلوکز عامل اصلی تأمین کننده انرژی ماهیچه‌است.



سیستم تامین انرژی هوازی
هر موجود زنده‌ای برای ادامه زندگی و فعالیت احتیاج به اکسیژن دارد. بعد از چند دقیقه که اکسیژن به بدن نرسد، نه آدنوزین تری فسفات در بدن ساخته می‌شود و نه انرژی وجود دارد و در نتیجه زندگی پایان می‌یابد. در ورزشهایی که بیش از ۳ دقیقه طول می‌کشد ماهیچه‌ها انرژی مورد نیاز را از تجزیه مواد غذایی در مقابل اکسیژن بدست می‌آورند. در دوهای ماراتن، کوهنوردی و... آدنوزین تری فسفات مورد نیاز ماهیچه‌ها از این طریق تأمین می‌گردد. پروتئین‌ها، گلیگوژن و چربیها از جمله مواد غذایی هستند که در این سیستم مورد استفاده قرار می‌گیرد و بیشترین مقدار تولید آدنوزین تری فسفات را نیز دارد.



برگشت به حالت اولیه و وام اکسیژن
همانطور که گفته شد برای اینکه بدن از حالت استراحت به حالت فعالیت درآید واکنش‌های متعددی در ماهیچه صورت می‌گیرد تا انرژی لازم کسب شود. همچنین برگشت بدن از حالت فعالیت به حالت استراحت نیز بسیار مهم است که آن را برگشت به حالت اولیه یا تجدید قوا (Recovery) گویند. ذخیره اکسیژن بدن هنگام فعالیت‌های شدید به مصرف سوخت و ساز بدن می‌رسد؛ در نتیجه هنگام استراحت مقدار اکسیژنی که از ذخیره بدن گرفته شده‌است باید دوباره به بدن باز گردد و اسیدلاکتیک جمع شده در ماهیچه‌ها نیز باید از سلول‌های ماهیچه‌ای خارج شودکه البته هر دو نیز هوازی هستند. انرژی از دست رفته بدن را وام اکسیژن (Oxygen Debt) گویند. مقدار وام اکسیژن برابر است با مقدار اکسیژن مورد نیاز در هنگام فعالیت؛ اگر نوع فعالیت شخص ملایم، طولانی و یکنواخت باشد بدن می‌تواند انرژی مورد نیاز را از هوا بگیرد و وام اکسیژن به وجود نمی‌آید والی اگر فعالیت شخص شدید باشد به طوری که او مجبور باشد با کمبود انرژی به فعالیت خود ادامه دهد مبتلا به وام اکسیژن می‌شود. مدت زمانی که طول می‌کشد تا بدن به حالت اول برگردد بستگی به مدت، شدت و آمادگی جسمانی فرد دارد؛ بعد از فعالیت‌ها در ۲ یا ۳ دقیقه اول مصرف اکسیژن به شدت پایین می‌آید اما از این شدت به تدریج کاسته می‌شود تا به حالت یکنواخت برسد. اگر شخص بعد از فعالیت ورزشی خود، به جای استراحت، کار ساده‌ای مثل راه رفتن یا دویدن آرام (سرد کردن) را انجام دهد اسیدلاکتیک موجود در بدن زودتر از بین می‌رود (در این مورد در فصل علم تمرین به طور کامل توضیح داده شده‌است)



فیزیولوژی دستگاه گردش خون
دستگاه گردش خون از رگها و قلب تشکیل شده که خون تیره و روشن در آنها جریان دارد. قلب به صورت تلمبه‌ای قوی خون روشن را از راه سرخرگ آئورت و سرخرگ ششی به بدن می‌فرستد و از طرفی سیاهرگهای اجوف فوقانی و تحتانی خون تیره را از بدن به قلب بر می‌گردانند. به استثنای سیاهرگ ششی که خون روشن و تیره را از ششها به قلب بر می‌گرداند. یاخته‌های بدن پیوسته در حال فعالیت اند و برای ادامه حیات و فعالیت خود موادی را می‌سوزانند و مواد دیگری را دفع می‌کنند دستگاه گردش خون عهده دار رساندن مواد سوختنی به سلول‌ها و خارج کردن مواد زائد است. قلب از چهار حفره تشکیل شده‌است. دو حفره در طرف راست و دو حفره در طرف چپ. دو حفره بالایی را دهلیز و دو حفره پایینی را بطن می‌گویند. بطن باعث به حرکت درآمدن خون در بدن می‌شود و اگر بطن از انقباض بیفتد خون از گردش خواهد ایستاد. شکل قلب شبیه مخروطی است که قاعده آن در بالا و نوک آن در پایین در انتهای بطن‌ها است. در موقع ضربان دو دهلیز با هم منقبض می‌شوند و بعد از مدت نسبتاً کوتاهی دو بطن منقبض می‌شوند بعد از این انقباض توقف بیشتر و طولانی تری وجود دارد که به منزلة استراحت قلب است. مدت انقباض بطن‌ها در افراد بالغ ۳/۰ ثانیه و مدت انبساط آنها ۵/۰ ثانیه طول می‌کشد روی هم رفته یک دوره کامل قلبی ۸/۰ ثانیه طول می‌کشد بنابراین در هر دقیقه تقریباً ۷۰ دورة قلبی صورت می‌گیرد و این رقم را تعداد ضربان قلب گویند. همانطور که می‌دانید در حدود 8 درصد وزن بدن را خون تشکیل می‌دهد یعنی یک شخص معمولی با وزن در حدود۷۰ کیلوگرم دارای ۵ تا ۶ لیتر خون است قسمت اعظم خون را گلبول‌های قرمز تشکیل می‌دهند. کمبود اکسیژن معمولاً موجب افزایش گلبولهای قرمز خون می‌شود به همین دلیل است که در ارتفاعات زیاد ورزشکاران استقامتی قادر نیستند رکوردهای جهانی از خود به جا بگذارند چون در مکان‌های مرتفع فشار نسبی اکسیژن در هوای تنفسی کم است و شخص ورزشکار قادر نیست به راحتی اکسیژن مورد نیاز را در هنگام ورزش از هوا کسب کند لذا این امر در کارایی او اثر نامطلوب می‌گذارد.



فیزیولوژی دستگاه تنفسی

طبق تعاریف کتاب‌های فیزیولوژی، تنفس عبارت است از جذب اکسیژن و دفع انیدریدکربنیک به وسیله سلول زنده، خواه این سلول حیوانی باشد، خواه نباتی.

عمل تنفس طی ۲ مرحله متمایز انجام می‌شود: تنفس خارجی: که عبارت است از حرکت هوا به داخل ریه‌ها، انتقال اکسیژن از ریه‌ها به خون و انتقال انیدریدکربنیک از خون به ریه‌ها. تنفس سلولی یا داخلی: که شامل جذب اکسیژن و تولید انیدریدکربنیک توسط سلولها می‌شود. انقباض حجاب حاجز یا دیافراگم و پایین آمدن در محوطه شکم باعث بزرگ شدن قفسه سینه از بالا به پایین می‌شود. هم‌زمان با این عمل ماهیچه‌ها شکم بتدریج شل می‌شود و با انقباض ماهیچه‌ها بین دنده‌ای، دنده‌ها به بالا کشیده می‌شود و استخوان جناغ را به جلو می‌راند این عمل قفسه سینه را از جلو به عقب می‌برد و از طرفین بزرگ می‌کند؛ با بزرگ شدن حجم قفسه سینه فشار موجود در ریه‌ها از فشار جو کاهش می‌یابد و باعث حرکت هوا به داخل ریه‌ها می‌شوند این عمل آنقدر ادامه پیدا می‌کند تا فشار هوا در ریه‌ها با فشار جو برابر گردد. کلیه اعمال بالا را دم گویند. اما عمل بازدم در حالت استراحت نتیجه شل شدن ماهیچه‌ها دمی و بازگشت ریه‌ها به حالت قبل صورت می‌گیرد با بالا رفتن ماهیچه دیافراگم و بازگشت حجم قفسه سینه به حالت استراحت، فشار هوا در ریه‌ها از جو بیشتر می‌شود و آن قدر هوا از ریه‌ها خارج می‌شود تا فشار ریه‌ها دوباره با فشار جو برابر گردد،عمل بازدم در حالت ورزش کاملاً تغییر کرده واز یک حرکت پاسیو(غیر فعال) به یک حرکت اکتیو(فعال)تبدیل می شود.



حجم جاری و تهویه ریوی
حجم هوایی که با هر بار حرکت به داخل ریه‌ها جریان می‌یابد را حجم جاری می‌نامند و مقدار آن بین ۴۰۰ تا ۵۰۰ میلی لیتر است و تهویه ریوی عبارت است از حجم جاری ضرب در تعداد حرکات تنفسی در دقیقه که معمولاً بین ۱۰ تا ۲۰ بار در حالت استراحت است. در هنگام ورزش تعداد حرکات تنفسی افزایش پیدا می‌کند و عمیق تر می‌شود تا جایی که در فعالیتهای شدید ورزشی ماهیچه‌ها دمی و بازدمی فعال می‌شوند و تهویه ریوی تا حدود ۱۰۰ لیتر در دقیقه افزایش می‌یابد. حداکثر تهویه ریوی ممکن است به ۱۵۰ لیتر در دقیقه هم برسد ولی افزایش تهویه ریوی اگر از ۱۰۰ لیتر در دقیقه بیشتر شود به افزایش جذب اکسیژن کمکی نمی‌کند زیرا به نظر می‌رسد که انتقال اکسیژن بیش از این مقدار به بافتها، توسط ماهیچه‌ها قلب و ماهیچه‌ها تنفس محدود می‌شود.



ورزش حرفه‌ای

ورزش حرفه‌ای به ورزشی گفته می‌شود که در آن ورزشکاران برای فعالیت خود دستمزد دریافت می‌کنند. ورزش حرفه‌ای در نقطه مقابل ورزش آماتور قرار می‌گیرد که در آن ورزشکاران فقط برای علاقه شخصی به ورزش می‌پردازند.

اغلب ورزش‌هایی که به صورت حرفه‌ای دنبال می‌شوند، ورزشکاران آماتوری نیز دارند که تعداد آنها بسیار بیشتر از همتایان حرفه‌ای خود است. طرفداران ورزش آماتور معمولاً ورزش حرفه‌ای را در تضاد با اصول اخلاقی ورزش می‌دانند و معتقدند رقابت‌های ورزشی نباید وسیله امرار معاش باشد. این گروه در برخی رشته‌های ورزشی تا مدتها توانستند در مقابل جاذبه‌های مالی و تبلیغاتی ورزش حرفه‌ای مقاومت کنند. برای مثال اتحاد راگبی برای سال‌ها یک ورزش نیمه‌وقت مخصوص آماتورها باقی‌مانده بود.

ورزشکارانی که در سطح اول ورزش حرفه‌ای فعالیت می‌کنند درآمدهای بسیار بالایی را دریافت می‌کنند. تایگر وودز بازیکن گلف اهل آمریکا پردرآمدترین ورزشکار دنیاست و بر اساس گزارش سال ۲۰۰۹ نشریه فوربز مجموع جوایز و دستمزدهایی که وی از فعالیت‌های ورزشی خود دریافت کرده از یک میلیارد دلار فراتر رفته‌است. مایکل جردن بازیکن بسکتبال آمریکایی با ۸۰۰ میلیون دلار و میشاییل شوماخر راننده فرمول یک آلمانی با حدود ۷۰۰ میلیون دلار درآمد از ورزش در رتبه‌های بعدی قرار می‌گیرند.

ده بازیکن برتر تنیس دنیا به طور میانگین سالانه ۳ میلیون دلار دریافت می‌کنند و میانگین درآمد بازیکنان لیگ برتر بیسبال آمریکا ۳ میلیون و ۴۴۰ هزار دلار بوده‌است. در فصل ۱۱-۲۰۱۰ میانگین دستمزد بازیکنان لیگ برتر فوتبال انگلستان ۷ میلیون پوند، بازیکنان سری آ فوتبال ایتالیا ۵ میلیون یورو و بازیکنان بوندسلیگا ۳.۳ میلیون یورو بوده‌است.
ساعت : 6:05 pm | نویسنده : admin | کلوپ ورزشی | مطلب قبلی
کلوپ ورزشی | next page | next page