تقویت کننده
تقویتکننده
آمپلی فایر یا تقویت کننده های الکترونیکی در موسیقی برای تقویت صدای سازهای پیکاپ داری مانند گیتار الکتریک، گیتار باس، ویولون و ... استفاده می شود.
عملکرد دستگاه
امپلی فایرها در به طور عمده دارای دو مدار الکتریکی به نام دریافت سیگنال صدا (Pre Amp) و تقویت کنندهٔ صدا (Power Amp) هستند. از مهمترین قطعاتی که در کیفیت صدای یک امپ بسیار مهم است وجود یک لامپ خلا میباشد. در گذشته در تمامی آمپلی فایرها از لامپ خلا استفاده می شد اما با گذشت زمان و روی کار آمدن ترانزیستورها، جایگزین مناسبی برای لامپهای خلأ به میدان آمد که از لحاظ هزینه بسیار کمتر از لامپهای خلأ بود. اما صدای تولید شده از خازنها هیچگاه کیفیت صدای تولید شده توسط لامپهای خلأ را نداشت و به همین دلیل در بسیاری از موارد حرفهای از همان لامپهای خلأ قدیمی استفاده میشود.
بلندگوی لسلی
بلندگوی لسلی ( بلندگوی گردان ) (به انگلیسی: Leslie Speaker) ساختاریست تشکیل شده از تقویت کننده/بلندگو که برای ایجاد تغییر در صدا با استفاده از اثر داپلر توسط دانلد لسلی اختراع شده.
تقویتکننده الکترونیکی
تقویت کننده الکترونیکی وسیلهای برای افزایش توان سیگنال میباشد. تقویت کننده شکل سیگنال ورودی را حفظ کرده اما دامنه بزرگتر آن را بزرگتر میکند.
از تقویت کننده ها برای تقویت صدای سازهای مانند گیتار الکتریک، گیتار باس، ویولن برای تقویت انواع خروجی های صدا مانند دستگاه های پخش خانگی، دستگاه های پخش خودرو و برای تقویت صداهای ضبط شده در مسیر دستگاه های ضبط صدا در استودیو های صوتی استفاده می شود.
بلندگو
بلندگو به گونهای دستگاه مبدل انرژی گفته میشود که انرژی الکتریکی را به صدا تبدیل میکند. واژه بلندگو ممکن است تنها به یک ترانسدیوسر (که به آن درایور گویند) و یا به سیستمی شامل چندین درایور و همچنین دیگر قطعات الکترونیکی اطلاق شود. بلندگو بخشی از هر سیستم صوتی است و معمولاً تفاوت کیفیت در سیستمهای صوتی ناشی از این بخش است و بیشترین اعوجاج در صدا در این بخش صورت میگیرد.
تاریخچه
فیلیپ رئیس یک بلندگوی الکتریکی را در سال ۱۸۶۳ در تلفن خود نصب کرد که قادر بود صدایی واضح را مجددا تولید کند.
بلندگوی رایانه
بلندگوی رایانه (به انگلیسی: Computer speaker) دستگاهی از دسته سختافزار رایانه است که وظیفهی انتقال صوت به بیرون از رایانه را دارا میباشد؛ این دستگاهها بیشتر دارای یک آمپلیفایر (تقویتکننده الکترونیکی) داخلی با قدرت کم هستند.ارتباط صوتی استاندارد این دستگاهها با رایانه از طریق کابل ۳٫۵ میلی متری (حدود یک هشتم اینچ) که رابط تیآراس نام دارد و اغلب به رنگ سبز مغزپستهای است برقرار میشود.
مانیتور استودیو
مانیتور استودیو نوعی از بلندگوها است که برای تولید برنامههای کاربردی مخصوص استودیو ضبط کاربرد دارد. فرق این بلندگوها با بلندگوهای معمولی در این است که صدای خارجشونده از این دستگاهها فاقد هرگونه تغییر و بیس بوده و صرفاً هرآنچه که درآن وارد میشود را خارج میکند. در اغلب موارد برای تفکیک بهتر صداهای ورودی این قطعه نیازمند تقویتکننده الکترونیکی است.
صدا
صدا یا صوت از انواع انرژی است که از تحرک ذرات ماده بوجود میآیند به این گونه که یک ذره با حرکت (برخورد) خود به ذرهای دیگر ذرهٔ دیگر را به حرکت در میآورد و به همین ترتیب است که صوت نشر مییابد. صدا ارتعاشیست که توسط حس شنوایی انسان درک میشود. ما معمولاً اصواتی که در هوا حرکت میکنند را میشنویم ولی صدا میتواند در گاز، مایع و حتی جامدات نیز حرکت کند.صدا ص َ (ع اِ) ۞ معرب «سدا» است ۞ و آن آوازی باشد که در کوه و گنبد وامثال آن پیچد و باز همان شنیده شود و در عربی نیز همین معنی را دارد .
سرعت صوت در جامدات بدلیل تراکم زیاد مولکولها، بیشتر از مایعات و در مایعات نیز بیشتر از گازها است. صوت بر خلاف امواج دیگر مانند نور و گرما فقط در محیطی نشر مییابد که ماده وجود داشته باشد و این بدین معناست که اگر بر سطح ماه (که هوایی وجود ندارد) انفجاری روی دهد شما هیچ وقت صدای آنرا نمیشنوید. از واحد دسیبل نیز برای اندازه گیری شدت صوت استفاده میکنند. محدودهٔ شنوایی انسان بین ۲۰ تا ۲۰۰۰۰ هرتز میباشد.
خصوصیات صدا
ویژگیهای صدا عبارتند از بسامد، طول موج، دامنه و سرعت
بسامد و طول موج
بسامد تعداد تغییرات فشار هوا در هر ثانیه در یک نقطه ی ثابت است که موج صدا در حال گذر از آن میباشد. یک چرخه ی نوسانی ساده در یک ثانیه برابر با یک هرتز است. طول موج برابر فاصله ی بین دو قله ی متوالی بوده که موج در مدت زمان یک چرخه ی نوسانی آنرا طی میکند.
سرعت صوت
سرعت انتشار صوت بستگی به نوع، دما و فشار محیطی که صوت در آن منتشر میشود دارد. در شرایط طبیعی از آنجایی که هوا تقریباً بصورت یک گاز کامل رفتار میکند سرعت صوت وابسته به فشار هوا نخواهد بود. در هوای خشک در دمای 20 درجه ی سانتیگراد سرعت صوت حدوداً 343 متر در ثانیه یعنی حدوداً یک متر در هر 3 هزارم ثانیه است. سرعت صوت همچنین وابسته به بسامد و طول موج است. بنابراین یک صوت 343 هرتزی طول موج یک متر خواهد داشت.
واژهٔ «صدا»، معرب (عربیشدهٔ) «سدا»ی پارسی است.
سرعت صوت
سرعت صوت (به انگلیسی: Speed of sound)، فاصلهایست که یک موج صوتی در مدت زمان یک ثانیه در یک سیال میپیماید. سرعت صوت مشخص میکند که این موج در بازهٔ مشخصی از زمان چه مسافتی را طی میکند. در هوای خشک و در دمای ۲۰ درجه سانتیگراد (۶۸ درجه فارنهایت)، سرعت صوت ۳۴۳٫۲ متر بر ثانیه (۱۱۲۶ فوت بر ثانیه)، ۱۲۳۶ کیلومتر بر ساعت (۷۶۸ مایل بر ساعت) یا به طور تقریبی، یک کیلومتر در سه ثانیه و یا تقریباً یک مایل در پنج ثانیه است. در دینامیک سیالات، سرعت صوت در یک سیال (گاز یا مایع)، به عنوان یک ابزار حسابگری نسبی خود سرعت استفاده میشود. سرعت یک شیئ (فاصله بر زمان) تقسیم بر سرعت صوت در سیال به عنوان عدد ماخ شناخته میشود. اشیایئ که با سرعت بیشتر از یک ماخ حرکت میکنند، در سرعتهای سوپرسونیک حرکت میکنند.
سرعت صوت در یک گاز ایدهآل، مستقل از فرکانس است وتابعی از ریشهٔ دوم دمای مطلق است ولی به فشار یا چگالی آن گاز وابسته نیست. برای گازهای مختلف، سرعت صوت به طور معکوس به ریشه دوم میانگین جرم مولکولی گاز بستگی دارد.
در گفتگوهای مرسوم روزمره، منظور از سرعت صوت، سرعت موج صوتی در سیالِ هوا است. با این حال، سرعت صوت از یک ماده به مادهٔ دیگر متفاوت است. صوت در مایعات و جامدات نامتخلخل سریعتر از هوا، حرکت میکند. میتوان گفت سرعت صوت در آب حدود ۴٫۳ برابر (۱۴۸۴ متر بر ثانیه)، و در آهن تقریباً ۱۵ برابر (۵۱۲۰ متر بر ثانیه) سرعت آن در هوای ۲۰ درجه سانتیگراد است.
سرعت صوت در فلزات و جامدات، مایعات، درون محیطهایی که فشردگی هوای آنها نسبت به محیط آزاد بیشتر است، مناطق سرد و مرطوب و پست تر از دریا، مناطق سرد و مرطوب در کنار دریا، مناطق سرد و مرطوب بالاتر از دریا، مناطق مرطوب بالاتر از دریا نسبت به هوای آزاد در حالت عادی به ترتیب ذکر شده بیشتر است. صوت از محیطهایی که مادی نیستند (در آنجا ماده وجود ندارد) نمیتواند عبور کند.
صدای انسان
صدای انسان متشکل از صوتی است که با استفاده از تارهای صوتی توسط انسان ساخته شده و برای صحبت کردن ، آواز خواندن ، خندیدن ، گریه کردن ، فریاد زدن و ... مورد استفاده قرار می گیرد.
تارهای صوتی فقط بخشی از صدای اولیه ی انسان را می سازند و به طور کلی مکانیزم تولید صدای انسان را می توان به سه بخش ریه ، تارهای صوتی موجود در حنجره و مفاصل تقسیم بندی کرد.
ریه ( پمپ ) باید جریان هوا و فشار هوای کافی را برای ارتعاش تارهای صوتی تولید کند تارهای صوتی یک دریچه ی ارتعاشی هستند که جریان هوا را از ریه صادر می کند تا پالس های قابل شنیدنی را به صورت یک منبع صدا در حنجره تولید نمایند.عضلات حنجره ، طول و تنش تارهای صوتی را برای ایجاد تن صدایی بسیار خوب تنظیم می کنند .
مفاصل ( بخش هایی از دستگاه صوتی در قسمت فوقانی حنجره شامل زبان ، کام ، گونه ، لب ها و غیره ) ، صدای نشأت گرفته از حنجره را واضح و شفاف و به نوعی فیلتر می کنند و تا حدی می توانند جریان هوای حنجره را به عنوان یک منبع صدا تقویت یا تضعیف نمایند .
تارهای صوتی در ترکیب با مفاصل قادر به تولید آرایه های بسیار پیچیده ای از صدا هستند . تن یا لحن صدا می تواند بیانگر احساسات مختلف انسان باشد : مانند خشم ، تعجب یا شادی .
خواننده ها از صدای انسان به عنوان ابزاری برای ایجاد موسیقی استفاده می کنند .
مهندسی صوت
مهندسی صوت (به انگلیسی: Acoustical engineering) قسمتی از علم صوت است که با ضبط و تکثیر صوت توسط وسایل الکتریکی و مکانیکی سروکار دارد. مهندسی صوت از رشتههای مختلفی بهره میبرد از جمله: مهندسی برق، صوتشناسی (acoustics)، روانشناسی صوتی (psychoacoustics) و موسیقی.
نوروصوتشناسی
نوروصوتشناسی یا آکوستو-اپتیک (Acousto-optics) شاخهای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیلهٔ امواج صوتی میپردازد.
اپتیک تاریخچهای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچهای طولانی دارد که به زمان یونانیان باستان باز میگردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچهای کوتاهاست. این زمینه از علم با پیش بینی بریلوئن در مورد پراش نور بوسیلهٔ امواج صوتی منتشر شده در ماده در سال ۱۹۲۲ میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.
مورد خاص پراش مرتبهٔ اول تحت یک زاویهٔ فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال ۱۹۳۷ یک مدل عمومی تر را طراحی کردند که پراشهای مرتبهٔ بالاتر را آشکار کند. این مدل بعدها در سال ۱۹۵۶ توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبهٔ پراشی مشخص بود.
اساس نوروصوتشناسی، تغییر ضریب شکست به خاطر حضور موج صوتی در مادهاست. موج صوتی یک شبکهٔ ضریب شکست در ماده به وجود میآورد و این شبکه توسط موج نوری "دیده" میشود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.
آکوستو اپتیک
آکوستو اپتیک شاخه ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیله ی امواج صوتی می پردازد.
مقدمه
اپتیک تاریخچه ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه ای طولانی دارد که به زمان یونانیان باستان باز می گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه ای کوتاه است. این زمینه از علم با پیش بینیبریلوئندر مورد پراش نور بوسیله ی امواج صوتی منتشر شده در ماده در سال 1922 میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.
مورد خاص پراش مرتبه ی اول تحت یک زاویه ی فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال 1937 یک مدل عمومی تر را طراحی کردند که پراش های مرتبه ی بالاتر را آشکار کند. این مدل بعد ها در سال 1956 توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبه ی پراشی مشخص بود.
اساس آکوستو اپتیک، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده است. موج صوتی یک شبکه ی ضریب شکست در ماده به وجود می آورد و این شبکه توسط موج نوری "دیده" می شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.
ابزارهای الکترو اپتیکی
ابزار های آکوستو اپتیکی شامل سه گروه زیر هستند:
1- مدولاتور الکترو اپتیکی
با تغییر پارامترهای موج صوتی مانند دامنه، فاز، فرکانس، و قطبش می توان خواص موج نوری را مدوله کرد. برهمکنش نور و صوت همچنین امکان مدوله کردن زمانی و فضایی موج نوری را فراهم می آورد.
یک راه ساده برای مدوله کردن پرتوی اپتیکی عبور نور از محیطی است که در آن موج صوتی به طور متناوب روشن و خاموش شود. وقتی صوت خاموش باشد زاویه ی پراش صفر و نور بی تغییر است. با روشن شدن صوت پراش رخ می دهد و شدت صوت در زوایای پراش افزایش ی یابد. با ثابت نگاه داشتن فرکانس صوتی و تغییر در توان مولد صوت می توان این ابزار را به یک مدولاتور آکوستواپتیکی تبدیل نمود. در طراحی مدولاتور باید به نحوی عمل کرد که ماکزیمم شدت نور در پرتوی پراشیده رخ بدهد. مدت زمانی که طول می کشد صوت از ماده عبور کند نیز محدودیتی بر سرعت سوییچ کردن تحمیل می کند. برای همین پرتوی نوری را تا حد ممکن باریک می کنند. باریک ترین پرتوی نوری ممکن را حد پهنای باند می نامند.
2- فیلتر های الکترو اپتیکی
رابطه ی 4 ارتباطی را میان طول موج صوتی و طول موج نوری نشان می دهد. در واقع پرتوی نوری تابیده شده، اگر دارای تعداد زیادی طول موج باشد فقط در طول موج های خاصی پراکنده می شود. مابقی طول موج ها فیلتر خواهند شد.
3- منحرف کننده های الکترو اپتیکی
با ایجاد یک تغییر در فرکانس صوت می توان تغییر زاویه ای در پرتوی نوری ایجاد کرد.
پژواک
پژواک (اکو)، بازگشت صدا از دیوار یا سایر اشیاست. صدا با سرعتی مشخّص و ثابت (نزدیک به ۳۴۴ متر بر ثانیه) حرکت میکند؛ بنابراین میتوانیم با استفاده از پژواک، فاصلهٔ برخی از اشیا را محاسبه کنیم. دستگاه عمقسنج کشتی، برای محاسبهٔ عمق دریا از پژواک بهره میگیرد.
پژواک، خفّاش را قادر میسازد تا در تاریکی پرواز کند. رادار نیز از خاصیّت پژواک (وبا استفاده از امواج رادیویی) در کشف هدف بهره میگیرد.
فرامواد
متامتریال یا فرامواد به ماده مرکبی گفته میشود که دارای خواص نامتعارف الکترومغناطیس در ساختار وجودی خود است. آنچه این مواد را غیر معمول کرده است، خاصیت ضریب شکست منفی نور در آنها است، به این معنا که این مواد نور را در جهت مخالف مواد عادی منکسر میکنند. مواد الکترومغناطیس تشکیل دهنده آنها میتواند با دستکاری مختصر و دقیق ساختارشان «تنظیم» نیزبشود.
این مواد از ترکیب میلههای ریز و مجموعهای از حلقههای فلزی و مانند آنان ساخته شده است که برای اولین بار توسط دیوید اسمیت (David Smith استاد دانشگاه کالیفرنیا) ساخته شد. خواص نامتعارف این مواد سبب شده است از آنها در زمینههای مختلف استفاده شود از جمله آنها در مهندسی مایکروویو است که میتوان به کاربرد در موجبرها، جبران پاشندگی، آنتنهای هوشمند، لنزها و نمونههای فراوان دیگر استفاده کرد.
آمپلی فایر یا تقویت کننده های الکترونیکی در موسیقی برای تقویت صدای سازهای پیکاپ داری مانند گیتار الکتریک، گیتار باس، ویولون و ... استفاده می شود.
عملکرد دستگاه
امپلی فایرها در به طور عمده دارای دو مدار الکتریکی به نام دریافت سیگنال صدا (Pre Amp) و تقویت کنندهٔ صدا (Power Amp) هستند. از مهمترین قطعاتی که در کیفیت صدای یک امپ بسیار مهم است وجود یک لامپ خلا میباشد. در گذشته در تمامی آمپلی فایرها از لامپ خلا استفاده می شد اما با گذشت زمان و روی کار آمدن ترانزیستورها، جایگزین مناسبی برای لامپهای خلأ به میدان آمد که از لحاظ هزینه بسیار کمتر از لامپهای خلأ بود. اما صدای تولید شده از خازنها هیچگاه کیفیت صدای تولید شده توسط لامپهای خلأ را نداشت و به همین دلیل در بسیاری از موارد حرفهای از همان لامپهای خلأ قدیمی استفاده میشود.
بلندگوی لسلی
بلندگوی لسلی ( بلندگوی گردان ) (به انگلیسی: Leslie Speaker) ساختاریست تشکیل شده از تقویت کننده/بلندگو که برای ایجاد تغییر در صدا با استفاده از اثر داپلر توسط دانلد لسلی اختراع شده.
تقویتکننده الکترونیکی
تقویت کننده الکترونیکی وسیلهای برای افزایش توان سیگنال میباشد. تقویت کننده شکل سیگنال ورودی را حفظ کرده اما دامنه بزرگتر آن را بزرگتر میکند.
از تقویت کننده ها برای تقویت صدای سازهای مانند گیتار الکتریک، گیتار باس، ویولن برای تقویت انواع خروجی های صدا مانند دستگاه های پخش خانگی، دستگاه های پخش خودرو و برای تقویت صداهای ضبط شده در مسیر دستگاه های ضبط صدا در استودیو های صوتی استفاده می شود.
بلندگو
بلندگو به گونهای دستگاه مبدل انرژی گفته میشود که انرژی الکتریکی را به صدا تبدیل میکند. واژه بلندگو ممکن است تنها به یک ترانسدیوسر (که به آن درایور گویند) و یا به سیستمی شامل چندین درایور و همچنین دیگر قطعات الکترونیکی اطلاق شود. بلندگو بخشی از هر سیستم صوتی است و معمولاً تفاوت کیفیت در سیستمهای صوتی ناشی از این بخش است و بیشترین اعوجاج در صدا در این بخش صورت میگیرد.
تاریخچه
فیلیپ رئیس یک بلندگوی الکتریکی را در سال ۱۸۶۳ در تلفن خود نصب کرد که قادر بود صدایی واضح را مجددا تولید کند.
بلندگوی رایانه
بلندگوی رایانه (به انگلیسی: Computer speaker) دستگاهی از دسته سختافزار رایانه است که وظیفهی انتقال صوت به بیرون از رایانه را دارا میباشد؛ این دستگاهها بیشتر دارای یک آمپلیفایر (تقویتکننده الکترونیکی) داخلی با قدرت کم هستند.ارتباط صوتی استاندارد این دستگاهها با رایانه از طریق کابل ۳٫۵ میلی متری (حدود یک هشتم اینچ) که رابط تیآراس نام دارد و اغلب به رنگ سبز مغزپستهای است برقرار میشود.
مانیتور استودیو
مانیتور استودیو نوعی از بلندگوها است که برای تولید برنامههای کاربردی مخصوص استودیو ضبط کاربرد دارد. فرق این بلندگوها با بلندگوهای معمولی در این است که صدای خارجشونده از این دستگاهها فاقد هرگونه تغییر و بیس بوده و صرفاً هرآنچه که درآن وارد میشود را خارج میکند. در اغلب موارد برای تفکیک بهتر صداهای ورودی این قطعه نیازمند تقویتکننده الکترونیکی است.
صدا
صدا یا صوت از انواع انرژی است که از تحرک ذرات ماده بوجود میآیند به این گونه که یک ذره با حرکت (برخورد) خود به ذرهای دیگر ذرهٔ دیگر را به حرکت در میآورد و به همین ترتیب است که صوت نشر مییابد. صدا ارتعاشیست که توسط حس شنوایی انسان درک میشود. ما معمولاً اصواتی که در هوا حرکت میکنند را میشنویم ولی صدا میتواند در گاز، مایع و حتی جامدات نیز حرکت کند.صدا ص َ (ع اِ) ۞ معرب «سدا» است ۞ و آن آوازی باشد که در کوه و گنبد وامثال آن پیچد و باز همان شنیده شود و در عربی نیز همین معنی را دارد .
سرعت صوت در جامدات بدلیل تراکم زیاد مولکولها، بیشتر از مایعات و در مایعات نیز بیشتر از گازها است. صوت بر خلاف امواج دیگر مانند نور و گرما فقط در محیطی نشر مییابد که ماده وجود داشته باشد و این بدین معناست که اگر بر سطح ماه (که هوایی وجود ندارد) انفجاری روی دهد شما هیچ وقت صدای آنرا نمیشنوید. از واحد دسیبل نیز برای اندازه گیری شدت صوت استفاده میکنند. محدودهٔ شنوایی انسان بین ۲۰ تا ۲۰۰۰۰ هرتز میباشد.
خصوصیات صدا
ویژگیهای صدا عبارتند از بسامد، طول موج، دامنه و سرعت
بسامد و طول موج
بسامد تعداد تغییرات فشار هوا در هر ثانیه در یک نقطه ی ثابت است که موج صدا در حال گذر از آن میباشد. یک چرخه ی نوسانی ساده در یک ثانیه برابر با یک هرتز است. طول موج برابر فاصله ی بین دو قله ی متوالی بوده که موج در مدت زمان یک چرخه ی نوسانی آنرا طی میکند.
سرعت صوت
سرعت انتشار صوت بستگی به نوع، دما و فشار محیطی که صوت در آن منتشر میشود دارد. در شرایط طبیعی از آنجایی که هوا تقریباً بصورت یک گاز کامل رفتار میکند سرعت صوت وابسته به فشار هوا نخواهد بود. در هوای خشک در دمای 20 درجه ی سانتیگراد سرعت صوت حدوداً 343 متر در ثانیه یعنی حدوداً یک متر در هر 3 هزارم ثانیه است. سرعت صوت همچنین وابسته به بسامد و طول موج است. بنابراین یک صوت 343 هرتزی طول موج یک متر خواهد داشت.
واژهٔ «صدا»، معرب (عربیشدهٔ) «سدا»ی پارسی است.
سرعت صوت
سرعت صوت (به انگلیسی: Speed of sound)، فاصلهایست که یک موج صوتی در مدت زمان یک ثانیه در یک سیال میپیماید. سرعت صوت مشخص میکند که این موج در بازهٔ مشخصی از زمان چه مسافتی را طی میکند. در هوای خشک و در دمای ۲۰ درجه سانتیگراد (۶۸ درجه فارنهایت)، سرعت صوت ۳۴۳٫۲ متر بر ثانیه (۱۱۲۶ فوت بر ثانیه)، ۱۲۳۶ کیلومتر بر ساعت (۷۶۸ مایل بر ساعت) یا به طور تقریبی، یک کیلومتر در سه ثانیه و یا تقریباً یک مایل در پنج ثانیه است. در دینامیک سیالات، سرعت صوت در یک سیال (گاز یا مایع)، به عنوان یک ابزار حسابگری نسبی خود سرعت استفاده میشود. سرعت یک شیئ (فاصله بر زمان) تقسیم بر سرعت صوت در سیال به عنوان عدد ماخ شناخته میشود. اشیایئ که با سرعت بیشتر از یک ماخ حرکت میکنند، در سرعتهای سوپرسونیک حرکت میکنند.
سرعت صوت در یک گاز ایدهآل، مستقل از فرکانس است وتابعی از ریشهٔ دوم دمای مطلق است ولی به فشار یا چگالی آن گاز وابسته نیست. برای گازهای مختلف، سرعت صوت به طور معکوس به ریشه دوم میانگین جرم مولکولی گاز بستگی دارد.
در گفتگوهای مرسوم روزمره، منظور از سرعت صوت، سرعت موج صوتی در سیالِ هوا است. با این حال، سرعت صوت از یک ماده به مادهٔ دیگر متفاوت است. صوت در مایعات و جامدات نامتخلخل سریعتر از هوا، حرکت میکند. میتوان گفت سرعت صوت در آب حدود ۴٫۳ برابر (۱۴۸۴ متر بر ثانیه)، و در آهن تقریباً ۱۵ برابر (۵۱۲۰ متر بر ثانیه) سرعت آن در هوای ۲۰ درجه سانتیگراد است.
سرعت صوت در فلزات و جامدات، مایعات، درون محیطهایی که فشردگی هوای آنها نسبت به محیط آزاد بیشتر است، مناطق سرد و مرطوب و پست تر از دریا، مناطق سرد و مرطوب در کنار دریا، مناطق سرد و مرطوب بالاتر از دریا، مناطق مرطوب بالاتر از دریا نسبت به هوای آزاد در حالت عادی به ترتیب ذکر شده بیشتر است. صوت از محیطهایی که مادی نیستند (در آنجا ماده وجود ندارد) نمیتواند عبور کند.
صدای انسان
صدای انسان متشکل از صوتی است که با استفاده از تارهای صوتی توسط انسان ساخته شده و برای صحبت کردن ، آواز خواندن ، خندیدن ، گریه کردن ، فریاد زدن و ... مورد استفاده قرار می گیرد.
تارهای صوتی فقط بخشی از صدای اولیه ی انسان را می سازند و به طور کلی مکانیزم تولید صدای انسان را می توان به سه بخش ریه ، تارهای صوتی موجود در حنجره و مفاصل تقسیم بندی کرد.
ریه ( پمپ ) باید جریان هوا و فشار هوای کافی را برای ارتعاش تارهای صوتی تولید کند تارهای صوتی یک دریچه ی ارتعاشی هستند که جریان هوا را از ریه صادر می کند تا پالس های قابل شنیدنی را به صورت یک منبع صدا در حنجره تولید نمایند.عضلات حنجره ، طول و تنش تارهای صوتی را برای ایجاد تن صدایی بسیار خوب تنظیم می کنند .
مفاصل ( بخش هایی از دستگاه صوتی در قسمت فوقانی حنجره شامل زبان ، کام ، گونه ، لب ها و غیره ) ، صدای نشأت گرفته از حنجره را واضح و شفاف و به نوعی فیلتر می کنند و تا حدی می توانند جریان هوای حنجره را به عنوان یک منبع صدا تقویت یا تضعیف نمایند .
تارهای صوتی در ترکیب با مفاصل قادر به تولید آرایه های بسیار پیچیده ای از صدا هستند . تن یا لحن صدا می تواند بیانگر احساسات مختلف انسان باشد : مانند خشم ، تعجب یا شادی .
خواننده ها از صدای انسان به عنوان ابزاری برای ایجاد موسیقی استفاده می کنند .
مهندسی صوت
مهندسی صوت (به انگلیسی: Acoustical engineering) قسمتی از علم صوت است که با ضبط و تکثیر صوت توسط وسایل الکتریکی و مکانیکی سروکار دارد. مهندسی صوت از رشتههای مختلفی بهره میبرد از جمله: مهندسی برق، صوتشناسی (acoustics)، روانشناسی صوتی (psychoacoustics) و موسیقی.
نوروصوتشناسی
نوروصوتشناسی یا آکوستو-اپتیک (Acousto-optics) شاخهای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیلهٔ امواج صوتی میپردازد.
اپتیک تاریخچهای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچهای طولانی دارد که به زمان یونانیان باستان باز میگردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچهای کوتاهاست. این زمینه از علم با پیش بینی بریلوئن در مورد پراش نور بوسیلهٔ امواج صوتی منتشر شده در ماده در سال ۱۹۲۲ میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.
مورد خاص پراش مرتبهٔ اول تحت یک زاویهٔ فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال ۱۹۳۷ یک مدل عمومی تر را طراحی کردند که پراشهای مرتبهٔ بالاتر را آشکار کند. این مدل بعدها در سال ۱۹۵۶ توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبهٔ پراشی مشخص بود.
اساس نوروصوتشناسی، تغییر ضریب شکست به خاطر حضور موج صوتی در مادهاست. موج صوتی یک شبکهٔ ضریب شکست در ماده به وجود میآورد و این شبکه توسط موج نوری "دیده" میشود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.
آکوستو اپتیک
آکوستو اپتیک شاخه ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیله ی امواج صوتی می پردازد.
مقدمه
اپتیک تاریخچه ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه ای طولانی دارد که به زمان یونانیان باستان باز می گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه ای کوتاه است. این زمینه از علم با پیش بینیبریلوئندر مورد پراش نور بوسیله ی امواج صوتی منتشر شده در ماده در سال 1922 میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.
مورد خاص پراش مرتبه ی اول تحت یک زاویه ی فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال 1937 یک مدل عمومی تر را طراحی کردند که پراش های مرتبه ی بالاتر را آشکار کند. این مدل بعد ها در سال 1956 توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبه ی پراشی مشخص بود.
اساس آکوستو اپتیک، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده است. موج صوتی یک شبکه ی ضریب شکست در ماده به وجود می آورد و این شبکه توسط موج نوری "دیده" می شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.
ابزارهای الکترو اپتیکی
ابزار های آکوستو اپتیکی شامل سه گروه زیر هستند:
1- مدولاتور الکترو اپتیکی
با تغییر پارامترهای موج صوتی مانند دامنه، فاز، فرکانس، و قطبش می توان خواص موج نوری را مدوله کرد. برهمکنش نور و صوت همچنین امکان مدوله کردن زمانی و فضایی موج نوری را فراهم می آورد.
یک راه ساده برای مدوله کردن پرتوی اپتیکی عبور نور از محیطی است که در آن موج صوتی به طور متناوب روشن و خاموش شود. وقتی صوت خاموش باشد زاویه ی پراش صفر و نور بی تغییر است. با روشن شدن صوت پراش رخ می دهد و شدت صوت در زوایای پراش افزایش ی یابد. با ثابت نگاه داشتن فرکانس صوتی و تغییر در توان مولد صوت می توان این ابزار را به یک مدولاتور آکوستواپتیکی تبدیل نمود. در طراحی مدولاتور باید به نحوی عمل کرد که ماکزیمم شدت نور در پرتوی پراشیده رخ بدهد. مدت زمانی که طول می کشد صوت از ماده عبور کند نیز محدودیتی بر سرعت سوییچ کردن تحمیل می کند. برای همین پرتوی نوری را تا حد ممکن باریک می کنند. باریک ترین پرتوی نوری ممکن را حد پهنای باند می نامند.
2- فیلتر های الکترو اپتیکی
رابطه ی 4 ارتباطی را میان طول موج صوتی و طول موج نوری نشان می دهد. در واقع پرتوی نوری تابیده شده، اگر دارای تعداد زیادی طول موج باشد فقط در طول موج های خاصی پراکنده می شود. مابقی طول موج ها فیلتر خواهند شد.
3- منحرف کننده های الکترو اپتیکی
با ایجاد یک تغییر در فرکانس صوت می توان تغییر زاویه ای در پرتوی نوری ایجاد کرد.
پژواک
پژواک (اکو)، بازگشت صدا از دیوار یا سایر اشیاست. صدا با سرعتی مشخّص و ثابت (نزدیک به ۳۴۴ متر بر ثانیه) حرکت میکند؛ بنابراین میتوانیم با استفاده از پژواک، فاصلهٔ برخی از اشیا را محاسبه کنیم. دستگاه عمقسنج کشتی، برای محاسبهٔ عمق دریا از پژواک بهره میگیرد.
پژواک، خفّاش را قادر میسازد تا در تاریکی پرواز کند. رادار نیز از خاصیّت پژواک (وبا استفاده از امواج رادیویی) در کشف هدف بهره میگیرد.
فرامواد
متامتریال یا فرامواد به ماده مرکبی گفته میشود که دارای خواص نامتعارف الکترومغناطیس در ساختار وجودی خود است. آنچه این مواد را غیر معمول کرده است، خاصیت ضریب شکست منفی نور در آنها است، به این معنا که این مواد نور را در جهت مخالف مواد عادی منکسر میکنند. مواد الکترومغناطیس تشکیل دهنده آنها میتواند با دستکاری مختصر و دقیق ساختارشان «تنظیم» نیزبشود.
این مواد از ترکیب میلههای ریز و مجموعهای از حلقههای فلزی و مانند آنان ساخته شده است که برای اولین بار توسط دیوید اسمیت (David Smith استاد دانشگاه کالیفرنیا) ساخته شد. خواص نامتعارف این مواد سبب شده است از آنها در زمینههای مختلف استفاده شود از جمله آنها در مهندسی مایکروویو است که میتوان به کاربرد در موجبرها، جبران پاشندگی، آنتنهای هوشمند، لنزها و نمونههای فراوان دیگر استفاده کرد.
فیزیولوژی ورزشی
فیزیولوژی ورزشی به ۴ بخش فراگیر تقسیم میشود: آمادگی جسمانی، فیزیولوژی ماهیچهها، فیزیولوژی گردش خون،
فیزیولوژی تنفس
بدن انسان برای اینکه بتواند نقش خود را به طور مؤثر در زندگی ایفا کند باید از آمادگی جسمانی خوبی برخوردار باشد یعنی به طور مداوم انرژی لازم را در اختیار داشته باشد تا بتواند وظایف خود را به نحو احسن انجام دهد. وقتی سخن از آمادگی جسمانی به میان میآید مقصود از آن داشتن چنان قلب، رگهای خونی و ششها و ماهیچههایی است که بتوانند وظایف خود را به خوبی انجام دهند و با شور و نشاط تمام در فعالیتها و تفریحات سالمی شرکت کنند که افراد عادی و غیر فعال از انجام آنها ناتوانند. عوامل متعددی در آمادگی جسمانی مؤثر است اما چهار عامل بیش از عوامل دیگر در این میان ایفای نقش میکنند این عوامل عبارتاند از (نیروی ماهیچه، استقامت ماهیچه، انعطاف ماهیچه و استقامت قلبی ریوی) می باشد.
نیروی ماهیچه
همانطور که میدانید حدود ۴۰ درصد وزن بدن را ماهیچه تشکیل میدهد این ماهیچهها در خود تولید انرژی میکنند که این نیرو، نیروی ماهیچه نامیده میشود که البته قابل اندازهگیری نیز هست. مهمترین عامل شناخته شده در آمادگی جسمانی استعداد و توانایی ماهیچهها در وارد کردن نیرو یا مقاومت در برابر آن است. تمرینات قدرتی از عواملی است که سبب حجیم شدن تارهای ماهیچهای میشود و توانایی فرد را در تولید نیروی بیشتر افزایش میدهد، این افزایش میتواند به دلایل عصبی (فراخوانی تارهای بیشتر و تحریک واحدهای عصبی-ماهیچهای بزرگتر)باشد یا به دلیلی مثل افزایش رها سازی یون کلسیم یا افزایش تماس تارهای اکتین و میوزین. قدرت ماهیچه اهمیت بسیاری در ورزشهای مختلف و البته فعالیتهای روزانه دارد بسیاری از مردان و حتی زنان از ماهیچهها بازو و سرشانه ضعیفی برخوردار هستند که باعث ضعف در فعالیتهای ورزشی و روزانه و ایجاد درد و بیماری در سنین بالا میشود..
استقامت ماهیچه
ماهیچهها در خود انرژی ذخیره میکنند. این عمل به ماهیچهها امکان میدهد که مدت زیادی به فعالیت خود ادامه دهند. این عمل ماهیچهها را استقامت ماهیچهای گویند. استقامت ماهیچهای عبارت است از ظرفیت یک ماهیچه یا گروهی از ماهیچهها برای انقباض مداوم. معمولاً استقامت ماهیچه را با قدرت ماهیچهای اشتباه میگیرند ولی باید توجه کرد که معمولاً استقامت ماهیچهای عبارت است از توانایی در کاربرد قدرت و نگهداری این توانایی برای مدت نسبتاً طولانی. برای مثال در فعالیتهایی چون: برف پارو کردن، چمن زدن، نظافت و یا حرکات ورزشی چون دراز و نشست، بالا کشیدن بدن در حالت بارفیکس و... استقامت ماهیچهای نقش اساسی دارد که میشود با تمرینات منظم ورزشی آن را افزایش داد.
انعطاف ماهیچه
توانایی در کاربرد ماهیچهها در وسیعترین دامنه حرکت آنها به دور مفصلها را انعطاف پذیری گویند. این عامل در آمادگی جسمانی از اهمیت ویژهای برخوردار است. با تمرینات ورزشی میزان توانایی مفاصل بدن در خم شدن و چرخیدن بیشتر میشود و در نتیجه کارایی ماهیچهها بهبود مییابد اگر مفاصل از انعطاف کمی برخوردار باشند محدودیت حرکتی برای بدن ایجاد میشود. انعطاف پذیری در فعالیتهای روزانه چون باغبانی، خانه داری، فعالیتهای ورزشی که احتیاج به نرمی و انعطاف پذیری دارند مؤثر است. که البته این نقش در فعالیتهای ورزشی چون ژیمناستیک، دو و میدانی و... پر رنگ تر میشود.
استقامت قلبی و ریوی
بسیاری از دانشمندان و صاحب نظران ورزشی عقیده دارند که عامل استقامت قلبی ریوی در آمادگی جسمانی بیش از عوامل دیگر اهمیت دارد و بعضی دیگر دقیقاً بر عکس این نظریه مهر تأیید زدند. اما تجربه نشان دادهاست که استقامت قلبی ریوی از عوامل اساسی آمادگی جسمانی است و با تمرینات استقامتی شدید و سنگین میتوان آن را ارتقاء بخشید.
فیزیولوژی ماهیچه
ماهیچهها دستگاهی هستند که مواد غذایی را از صورت شیمیایی به صورت انرژی مکانیکی یا کار تبدیل میکنند. میدانیم که حرکات بدن از انقباض ماهیچهها حاصل
در بخش ماهیچهها مخطط ۲ مطلب را بررسی میکنیم: ۱- انقباض ماهیچه، ۲- منابع انرژی ماهیچه.
انقباض ماهیچه: اگر طول ماهیچه به هنگام انقباض تغییر نکند این انقباض را (هم طول) میگویند. در این نوع انقباض جسم مقاوم جابه جا نمیشود تمام انرژی حاصل از انقباض به حرارت تبدیل میشود. ولی اگر انقباض ماهیچه به کوتاه شدن آن منجر شود آن انقباض را (هم تنش) میگویند که باعث میشود جسمی که در برابر ماهیچه قرار میگیرد جابه جا شود. سرعت انقباض ماهیچه با مقدار وزنهای که در مقابل آن قرار میگیرد رابطه عکس دارد. اگر هیچ نیرویی در برابر ماهیچه قرار نگیرد ماهیچه سریعاً منقبض میشود ولی اگر به تدریج نیروی مخالف افزایش مییابد از سرعت انقباض کاسته میشود. تا اینکه اگر میزان نیروی مخالف برابر با نیروی ماهیچه شود سرعت کوتاه شدن یا انقباض به صفر خواهد رسید.
منابع تامین انرژی
ماهیچه برای آنکه به حالت انقباض درآید احتیاج به انرژی دارد. منبع اصلی انرژی ماهیچه آدنوزین تری فسفات است که به مقدار کمی در ماهیچه وجود دارد ولی به مقدار زیادی انرژی آزاد میکند. کراتین فسفات منبع انرژی دیگری است که در سلولهای ماهیچهای ذخیره میشود. اگر مقدار آدنوزین تری فسفات در سلول بیش از اندازه لازم باشد انرژی اضافی صرف تولیدکراتین فسفات میشود و در نتیجه مقدار بیشتری از انرژی ذخیره خواهد شد. به مجرد ذخیره آدنوزین تری فسفات در ماهیچه کراتین فسفات موجود به سرعت و سهولت به آدنوزین تری فسفات تبدیل میشود و در نتیجه کراتین فسفات باعث ثابت ماندن مقدار آدنوزین تری فسفات ماهیچه میشود. انرژی حاصل از کراتین فسفات و آدنوزین تری فسفات برای مدت کوتاهی انرژی لازم را تأمین میکنند پس در فعالیتهای شدید بدنی که بیش از چند دقیقه طول میکشد باید منبع دیگری از انرژی وجود داشته باشد. این انرژی از تجزیه گلیگوژن حاصل میشود و چون این واکنش در مجاورت اکسیژن قرار میگیرد آن را هوازی یا (با اکسیژن) میگویند. اگر اکسیژن به اندازه کافی برای این واکنشهای شیمیایی وجود نداشته باشد در ماهیچه اسیدلاکتیک تولید میشود. قسمت اعظم این اسیدلاکتیک مجدداً به گلوکز و گلیگوژن تبدیل میشود و مقداری از آن در ماهیچه بر جای میماند. در ورزشهای سخت و طولانی و مخصوصاً افرادی که از آمادگی جسمانی کمی برخوردارند خستگی ماهیچهها بعد از ورزش مربوط به اسیدلاکتیک باقیمانده در ماهیچهاست، میزان خستگی با مقدار اسیدلاکتیک موجود در ماهیچه رابطه مستقیم دارد.
تولید انرژی در بدن به ۳ طریق انجام میگیرد که ۲ طریق آنها برای تولیدآدنوزین تری فسفات نیاز به اکسیژن ندارند (بی هوازی) و در سومین طریقه وجود اکسیژن کاملاً ضروری است که به آن (هوازی) گویند:
سیستم تامین انرژی فسفاژن ATP-Pc
در ورزشهایی چون: پرتاب نیزه، پرتاب دیسک، دو ۱۰۰ متر و شیرجه یا فعالیتهایی که زمان اجرای آن بسیار کم است (حدود ۱۰ ثانیه) و با حداکثر شدت انجام میشوند انرژی مورد نیاز را از این سیستم تأمین میکنند. آدنوزین تری فسفات وکراتین فسفات موجود در ماهیچه به صورت ذخیره وجود دارند و به هنگام فعالیت انرژی مورد لزوم را تهیه میکنند. در این سیستم برای تأمین انرژی احتیاجی به حضور اکسیژن نیست (بی هوازی)
سیستم تامین انرژی بی هوازی(اسیدلاکتیک)
در ورزشهایی که زمان اجرای آنها بین ۱ تا ۳ دقیقه طول میکشد انرژی مورد نیازشان را از این طریق تأمین میکنند مثل دوهای ۴۰۰ و۸۰۰ متر وکشتی. هنگام اجرای این فعالیتها اکسیژن به قدر کافی در ماهیچه موجود نیست از اینرو گلوکز موجود در ماهیچه به اسیدلاکتیک و آدنوزین تری فسفات تبدیل میشود. در حقیقت در این سیستم گلوکز عامل اصلی تأمین کننده انرژی ماهیچهاست.
سیستم تامین انرژی هوازی
هر موجود زندهای برای ادامه زندگی و فعالیت احتیاج به اکسیژن دارد. بعد از چند دقیقه که اکسیژن به بدن نرسد، نه آدنوزین تری فسفات در بدن ساخته میشود و نه انرژی وجود دارد و در نتیجه زندگی پایان مییابد. در ورزشهایی که بیش از ۳ دقیقه طول میکشد ماهیچهها انرژی مورد نیاز را از تجزیه مواد غذایی در مقابل اکسیژن بدست میآورند. در دوهای ماراتن، کوهنوردی و... آدنوزین تری فسفات مورد نیاز ماهیچهها از این طریق تأمین میگردد. پروتئینها، گلیگوژن و چربیها از جمله مواد غذایی هستند که در این سیستم مورد استفاده قرار میگیرد و بیشترین مقدار تولید آدنوزین تری فسفات را نیز دارد.
برگشت به حالت اولیه و وام اکسیژن
همانطور که گفته شد برای اینکه بدن از حالت استراحت به حالت فعالیت درآید واکنشهای متعددی در ماهیچه صورت میگیرد تا انرژی لازم کسب شود. همچنین برگشت بدن از حالت فعالیت به حالت استراحت نیز بسیار مهم است که آن را برگشت به حالت اولیه یا تجدید قوا (Recovery) گویند. ذخیره اکسیژن بدن هنگام فعالیتهای شدید به مصرف سوخت و ساز بدن میرسد؛ در نتیجه هنگام استراحت مقدار اکسیژنی که از ذخیره بدن گرفته شدهاست باید دوباره به بدن باز گردد و اسیدلاکتیک جمع شده در ماهیچهها نیز باید از سلولهای ماهیچهای خارج شودکه البته هر دو نیز هوازی هستند. انرژی از دست رفته بدن را وام اکسیژن (Oxygen Debt) گویند. مقدار وام اکسیژن برابر است با مقدار اکسیژن مورد نیاز در هنگام فعالیت؛ اگر نوع فعالیت شخص ملایم، طولانی و یکنواخت باشد بدن میتواند انرژی مورد نیاز را از هوا بگیرد و وام اکسیژن به وجود نمیآید والی اگر فعالیت شخص شدید باشد به طوری که او مجبور باشد با کمبود انرژی به فعالیت خود ادامه دهد مبتلا به وام اکسیژن میشود. مدت زمانی که طول میکشد تا بدن به حالت اول برگردد بستگی به مدت، شدت و آمادگی جسمانی فرد دارد؛ بعد از فعالیتها در ۲ یا ۳ دقیقه اول مصرف اکسیژن به شدت پایین میآید اما از این شدت به تدریج کاسته میشود تا به حالت یکنواخت برسد. اگر شخص بعد از فعالیت ورزشی خود، به جای استراحت، کار سادهای مثل راه رفتن یا دویدن آرام (سرد کردن) را انجام دهد اسیدلاکتیک موجود در بدن زودتر از بین میرود (در این مورد در فصل علم تمرین به طور کامل توضیح داده شدهاست)
فیزیولوژی دستگاه گردش خون
دستگاه گردش خون از رگها و قلب تشکیل شده که خون تیره و روشن در آنها جریان دارد. قلب به صورت تلمبهای قوی خون روشن را از راه سرخرگ آئورت و سرخرگ ششی به بدن میفرستد و از طرفی سیاهرگهای اجوف فوقانی و تحتانی خون تیره را از بدن به قلب بر میگردانند. به استثنای سیاهرگ ششی که خون روشن و تیره را از ششها به قلب بر میگرداند. یاختههای بدن پیوسته در حال فعالیت اند و برای ادامه حیات و فعالیت خود موادی را میسوزانند و مواد دیگری را دفع میکنند دستگاه گردش خون عهده دار رساندن مواد سوختنی به سلولها و خارج کردن مواد زائد است. قلب از چهار حفره تشکیل شدهاست. دو حفره در طرف راست و دو حفره در طرف چپ. دو حفره بالایی را دهلیز و دو حفره پایینی را بطن میگویند. بطن باعث به حرکت درآمدن خون در بدن میشود و اگر بطن از انقباض بیفتد خون از گردش خواهد ایستاد. شکل قلب شبیه مخروطی است که قاعده آن در بالا و نوک آن در پایین در انتهای بطنها است. در موقع ضربان دو دهلیز با هم منقبض میشوند و بعد از مدت نسبتاً کوتاهی دو بطن منقبض میشوند بعد از این انقباض توقف بیشتر و طولانی تری وجود دارد که به منزلة استراحت قلب است. مدت انقباض بطنها در افراد بالغ ۳/۰ ثانیه و مدت انبساط آنها ۵/۰ ثانیه طول میکشد روی هم رفته یک دوره کامل قلبی ۸/۰ ثانیه طول میکشد بنابراین در هر دقیقه تقریباً ۷۰ دورة قلبی صورت میگیرد و این رقم را تعداد ضربان قلب گویند. همانطور که میدانید در حدود 8 درصد وزن بدن را خون تشکیل میدهد یعنی یک شخص معمولی با وزن در حدود۷۰ کیلوگرم دارای ۵ تا ۶ لیتر خون است قسمت اعظم خون را گلبولهای قرمز تشکیل میدهند. کمبود اکسیژن معمولاً موجب افزایش گلبولهای قرمز خون میشود به همین دلیل است که در ارتفاعات زیاد ورزشکاران استقامتی قادر نیستند رکوردهای جهانی از خود به جا بگذارند چون در مکانهای مرتفع فشار نسبی اکسیژن در هوای تنفسی کم است و شخص ورزشکار قادر نیست به راحتی اکسیژن مورد نیاز را در هنگام ورزش از هوا کسب کند لذا این امر در کارایی او اثر نامطلوب میگذارد.
فیزیولوژی دستگاه تنفسی
طبق تعاریف کتابهای فیزیولوژی، تنفس عبارت است از جذب اکسیژن و دفع انیدریدکربنیک به وسیله سلول زنده، خواه این سلول حیوانی باشد، خواه نباتی.
عمل تنفس طی ۲ مرحله متمایز انجام میشود: تنفس خارجی: که عبارت است از حرکت هوا به داخل ریهها، انتقال اکسیژن از ریهها به خون و انتقال انیدریدکربنیک از خون به ریهها. تنفس سلولی یا داخلی: که شامل جذب اکسیژن و تولید انیدریدکربنیک توسط سلولها میشود. انقباض حجاب حاجز یا دیافراگم و پایین آمدن در محوطه شکم باعث بزرگ شدن قفسه سینه از بالا به پایین میشود. همزمان با این عمل ماهیچهها شکم بتدریج شل میشود و با انقباض ماهیچهها بین دندهای، دندهها به بالا کشیده میشود و استخوان جناغ را به جلو میراند این عمل قفسه سینه را از جلو به عقب میبرد و از طرفین بزرگ میکند؛ با بزرگ شدن حجم قفسه سینه فشار موجود در ریهها از فشار جو کاهش مییابد و باعث حرکت هوا به داخل ریهها میشوند این عمل آنقدر ادامه پیدا میکند تا فشار هوا در ریهها با فشار جو برابر گردد. کلیه اعمال بالا را دم گویند. اما عمل بازدم در حالت استراحت نتیجه شل شدن ماهیچهها دمی و بازگشت ریهها به حالت قبل صورت میگیرد با بالا رفتن ماهیچه دیافراگم و بازگشت حجم قفسه سینه به حالت استراحت، فشار هوا در ریهها از جو بیشتر میشود و آن قدر هوا از ریهها خارج میشود تا فشار ریهها دوباره با فشار جو برابر گردد،عمل بازدم در حالت ورزش کاملاً تغییر کرده واز یک حرکت پاسیو(غیر فعال) به یک حرکت اکتیو(فعال)تبدیل می شود.
حجم جاری و تهویه ریوی
حجم هوایی که با هر بار حرکت به داخل ریهها جریان مییابد را حجم جاری مینامند و مقدار آن بین ۴۰۰ تا ۵۰۰ میلی لیتر است و تهویه ریوی عبارت است از حجم جاری ضرب در تعداد حرکات تنفسی در دقیقه که معمولاً بین ۱۰ تا ۲۰ بار در حالت استراحت است. در هنگام ورزش تعداد حرکات تنفسی افزایش پیدا میکند و عمیق تر میشود تا جایی که در فعالیتهای شدید ورزشی ماهیچهها دمی و بازدمی فعال میشوند و تهویه ریوی تا حدود ۱۰۰ لیتر در دقیقه افزایش مییابد. حداکثر تهویه ریوی ممکن است به ۱۵۰ لیتر در دقیقه هم برسد ولی افزایش تهویه ریوی اگر از ۱۰۰ لیتر در دقیقه بیشتر شود به افزایش جذب اکسیژن کمکی نمیکند زیرا به نظر میرسد که انتقال اکسیژن بیش از این مقدار به بافتها، توسط ماهیچهها قلب و ماهیچهها تنفس محدود میشود.
ورزش حرفهای
ورزش حرفهای به ورزشی گفته میشود که در آن ورزشکاران برای فعالیت خود دستمزد دریافت میکنند. ورزش حرفهای در نقطه مقابل ورزش آماتور قرار میگیرد که در آن ورزشکاران فقط برای علاقه شخصی به ورزش میپردازند.
اغلب ورزشهایی که به صورت حرفهای دنبال میشوند، ورزشکاران آماتوری نیز دارند که تعداد آنها بسیار بیشتر از همتایان حرفهای خود است. طرفداران ورزش آماتور معمولاً ورزش حرفهای را در تضاد با اصول اخلاقی ورزش میدانند و معتقدند رقابتهای ورزشی نباید وسیله امرار معاش باشد. این گروه در برخی رشتههای ورزشی تا مدتها توانستند در مقابل جاذبههای مالی و تبلیغاتی ورزش حرفهای مقاومت کنند. برای مثال اتحاد راگبی برای سالها یک ورزش نیمهوقت مخصوص آماتورها باقیمانده بود.
ورزشکارانی که در سطح اول ورزش حرفهای فعالیت میکنند درآمدهای بسیار بالایی را دریافت میکنند. تایگر وودز بازیکن گلف اهل آمریکا پردرآمدترین ورزشکار دنیاست و بر اساس گزارش سال ۲۰۰۹ نشریه فوربز مجموع جوایز و دستمزدهایی که وی از فعالیتهای ورزشی خود دریافت کرده از یک میلیارد دلار فراتر رفتهاست. مایکل جردن بازیکن بسکتبال آمریکایی با ۸۰۰ میلیون دلار و میشاییل شوماخر راننده فرمول یک آلمانی با حدود ۷۰۰ میلیون دلار درآمد از ورزش در رتبههای بعدی قرار میگیرند.
ده بازیکن برتر تنیس دنیا به طور میانگین سالانه ۳ میلیون دلار دریافت میکنند و میانگین درآمد بازیکنان لیگ برتر بیسبال آمریکا ۳ میلیون و ۴۴۰ هزار دلار بودهاست. در فصل ۱۱-۲۰۱۰ میانگین دستمزد بازیکنان لیگ برتر فوتبال انگلستان ۷ میلیون پوند، بازیکنان سری آ فوتبال ایتالیا ۵ میلیون یورو و بازیکنان بوندسلیگا ۳.۳ میلیون یورو بودهاست.
فیزیولوژی ورزشی به ۴ بخش فراگیر تقسیم میشود: آمادگی جسمانی، فیزیولوژی ماهیچهها، فیزیولوژی گردش خون،
فیزیولوژی تنفس
بدن انسان برای اینکه بتواند نقش خود را به طور مؤثر در زندگی ایفا کند باید از آمادگی جسمانی خوبی برخوردار باشد یعنی به طور مداوم انرژی لازم را در اختیار داشته باشد تا بتواند وظایف خود را به نحو احسن انجام دهد. وقتی سخن از آمادگی جسمانی به میان میآید مقصود از آن داشتن چنان قلب، رگهای خونی و ششها و ماهیچههایی است که بتوانند وظایف خود را به خوبی انجام دهند و با شور و نشاط تمام در فعالیتها و تفریحات سالمی شرکت کنند که افراد عادی و غیر فعال از انجام آنها ناتوانند. عوامل متعددی در آمادگی جسمانی مؤثر است اما چهار عامل بیش از عوامل دیگر در این میان ایفای نقش میکنند این عوامل عبارتاند از (نیروی ماهیچه، استقامت ماهیچه، انعطاف ماهیچه و استقامت قلبی ریوی) می باشد.
نیروی ماهیچه
همانطور که میدانید حدود ۴۰ درصد وزن بدن را ماهیچه تشکیل میدهد این ماهیچهها در خود تولید انرژی میکنند که این نیرو، نیروی ماهیچه نامیده میشود که البته قابل اندازهگیری نیز هست. مهمترین عامل شناخته شده در آمادگی جسمانی استعداد و توانایی ماهیچهها در وارد کردن نیرو یا مقاومت در برابر آن است. تمرینات قدرتی از عواملی است که سبب حجیم شدن تارهای ماهیچهای میشود و توانایی فرد را در تولید نیروی بیشتر افزایش میدهد، این افزایش میتواند به دلایل عصبی (فراخوانی تارهای بیشتر و تحریک واحدهای عصبی-ماهیچهای بزرگتر)باشد یا به دلیلی مثل افزایش رها سازی یون کلسیم یا افزایش تماس تارهای اکتین و میوزین. قدرت ماهیچه اهمیت بسیاری در ورزشهای مختلف و البته فعالیتهای روزانه دارد بسیاری از مردان و حتی زنان از ماهیچهها بازو و سرشانه ضعیفی برخوردار هستند که باعث ضعف در فعالیتهای ورزشی و روزانه و ایجاد درد و بیماری در سنین بالا میشود..
استقامت ماهیچه
ماهیچهها در خود انرژی ذخیره میکنند. این عمل به ماهیچهها امکان میدهد که مدت زیادی به فعالیت خود ادامه دهند. این عمل ماهیچهها را استقامت ماهیچهای گویند. استقامت ماهیچهای عبارت است از ظرفیت یک ماهیچه یا گروهی از ماهیچهها برای انقباض مداوم. معمولاً استقامت ماهیچه را با قدرت ماهیچهای اشتباه میگیرند ولی باید توجه کرد که معمولاً استقامت ماهیچهای عبارت است از توانایی در کاربرد قدرت و نگهداری این توانایی برای مدت نسبتاً طولانی. برای مثال در فعالیتهایی چون: برف پارو کردن، چمن زدن، نظافت و یا حرکات ورزشی چون دراز و نشست، بالا کشیدن بدن در حالت بارفیکس و... استقامت ماهیچهای نقش اساسی دارد که میشود با تمرینات منظم ورزشی آن را افزایش داد.
انعطاف ماهیچه
توانایی در کاربرد ماهیچهها در وسیعترین دامنه حرکت آنها به دور مفصلها را انعطاف پذیری گویند. این عامل در آمادگی جسمانی از اهمیت ویژهای برخوردار است. با تمرینات ورزشی میزان توانایی مفاصل بدن در خم شدن و چرخیدن بیشتر میشود و در نتیجه کارایی ماهیچهها بهبود مییابد اگر مفاصل از انعطاف کمی برخوردار باشند محدودیت حرکتی برای بدن ایجاد میشود. انعطاف پذیری در فعالیتهای روزانه چون باغبانی، خانه داری، فعالیتهای ورزشی که احتیاج به نرمی و انعطاف پذیری دارند مؤثر است. که البته این نقش در فعالیتهای ورزشی چون ژیمناستیک، دو و میدانی و... پر رنگ تر میشود.
استقامت قلبی و ریوی
بسیاری از دانشمندان و صاحب نظران ورزشی عقیده دارند که عامل استقامت قلبی ریوی در آمادگی جسمانی بیش از عوامل دیگر اهمیت دارد و بعضی دیگر دقیقاً بر عکس این نظریه مهر تأیید زدند. اما تجربه نشان دادهاست که استقامت قلبی ریوی از عوامل اساسی آمادگی جسمانی است و با تمرینات استقامتی شدید و سنگین میتوان آن را ارتقاء بخشید.
فیزیولوژی ماهیچه
ماهیچهها دستگاهی هستند که مواد غذایی را از صورت شیمیایی به صورت انرژی مکانیکی یا کار تبدیل میکنند. میدانیم که حرکات بدن از انقباض ماهیچهها حاصل
در بخش ماهیچهها مخطط ۲ مطلب را بررسی میکنیم: ۱- انقباض ماهیچه، ۲- منابع انرژی ماهیچه.
انقباض ماهیچه: اگر طول ماهیچه به هنگام انقباض تغییر نکند این انقباض را (هم طول) میگویند. در این نوع انقباض جسم مقاوم جابه جا نمیشود تمام انرژی حاصل از انقباض به حرارت تبدیل میشود. ولی اگر انقباض ماهیچه به کوتاه شدن آن منجر شود آن انقباض را (هم تنش) میگویند که باعث میشود جسمی که در برابر ماهیچه قرار میگیرد جابه جا شود. سرعت انقباض ماهیچه با مقدار وزنهای که در مقابل آن قرار میگیرد رابطه عکس دارد. اگر هیچ نیرویی در برابر ماهیچه قرار نگیرد ماهیچه سریعاً منقبض میشود ولی اگر به تدریج نیروی مخالف افزایش مییابد از سرعت انقباض کاسته میشود. تا اینکه اگر میزان نیروی مخالف برابر با نیروی ماهیچه شود سرعت کوتاه شدن یا انقباض به صفر خواهد رسید.
منابع تامین انرژی
ماهیچه برای آنکه به حالت انقباض درآید احتیاج به انرژی دارد. منبع اصلی انرژی ماهیچه آدنوزین تری فسفات است که به مقدار کمی در ماهیچه وجود دارد ولی به مقدار زیادی انرژی آزاد میکند. کراتین فسفات منبع انرژی دیگری است که در سلولهای ماهیچهای ذخیره میشود. اگر مقدار آدنوزین تری فسفات در سلول بیش از اندازه لازم باشد انرژی اضافی صرف تولیدکراتین فسفات میشود و در نتیجه مقدار بیشتری از انرژی ذخیره خواهد شد. به مجرد ذخیره آدنوزین تری فسفات در ماهیچه کراتین فسفات موجود به سرعت و سهولت به آدنوزین تری فسفات تبدیل میشود و در نتیجه کراتین فسفات باعث ثابت ماندن مقدار آدنوزین تری فسفات ماهیچه میشود. انرژی حاصل از کراتین فسفات و آدنوزین تری فسفات برای مدت کوتاهی انرژی لازم را تأمین میکنند پس در فعالیتهای شدید بدنی که بیش از چند دقیقه طول میکشد باید منبع دیگری از انرژی وجود داشته باشد. این انرژی از تجزیه گلیگوژن حاصل میشود و چون این واکنش در مجاورت اکسیژن قرار میگیرد آن را هوازی یا (با اکسیژن) میگویند. اگر اکسیژن به اندازه کافی برای این واکنشهای شیمیایی وجود نداشته باشد در ماهیچه اسیدلاکتیک تولید میشود. قسمت اعظم این اسیدلاکتیک مجدداً به گلوکز و گلیگوژن تبدیل میشود و مقداری از آن در ماهیچه بر جای میماند. در ورزشهای سخت و طولانی و مخصوصاً افرادی که از آمادگی جسمانی کمی برخوردارند خستگی ماهیچهها بعد از ورزش مربوط به اسیدلاکتیک باقیمانده در ماهیچهاست، میزان خستگی با مقدار اسیدلاکتیک موجود در ماهیچه رابطه مستقیم دارد.
تولید انرژی در بدن به ۳ طریق انجام میگیرد که ۲ طریق آنها برای تولیدآدنوزین تری فسفات نیاز به اکسیژن ندارند (بی هوازی) و در سومین طریقه وجود اکسیژن کاملاً ضروری است که به آن (هوازی) گویند:
سیستم تامین انرژی فسفاژن ATP-Pc
در ورزشهایی چون: پرتاب نیزه، پرتاب دیسک، دو ۱۰۰ متر و شیرجه یا فعالیتهایی که زمان اجرای آن بسیار کم است (حدود ۱۰ ثانیه) و با حداکثر شدت انجام میشوند انرژی مورد نیاز را از این سیستم تأمین میکنند. آدنوزین تری فسفات وکراتین فسفات موجود در ماهیچه به صورت ذخیره وجود دارند و به هنگام فعالیت انرژی مورد لزوم را تهیه میکنند. در این سیستم برای تأمین انرژی احتیاجی به حضور اکسیژن نیست (بی هوازی)
سیستم تامین انرژی بی هوازی(اسیدلاکتیک)
در ورزشهایی که زمان اجرای آنها بین ۱ تا ۳ دقیقه طول میکشد انرژی مورد نیازشان را از این طریق تأمین میکنند مثل دوهای ۴۰۰ و۸۰۰ متر وکشتی. هنگام اجرای این فعالیتها اکسیژن به قدر کافی در ماهیچه موجود نیست از اینرو گلوکز موجود در ماهیچه به اسیدلاکتیک و آدنوزین تری فسفات تبدیل میشود. در حقیقت در این سیستم گلوکز عامل اصلی تأمین کننده انرژی ماهیچهاست.
سیستم تامین انرژی هوازی
هر موجود زندهای برای ادامه زندگی و فعالیت احتیاج به اکسیژن دارد. بعد از چند دقیقه که اکسیژن به بدن نرسد، نه آدنوزین تری فسفات در بدن ساخته میشود و نه انرژی وجود دارد و در نتیجه زندگی پایان مییابد. در ورزشهایی که بیش از ۳ دقیقه طول میکشد ماهیچهها انرژی مورد نیاز را از تجزیه مواد غذایی در مقابل اکسیژن بدست میآورند. در دوهای ماراتن، کوهنوردی و... آدنوزین تری فسفات مورد نیاز ماهیچهها از این طریق تأمین میگردد. پروتئینها، گلیگوژن و چربیها از جمله مواد غذایی هستند که در این سیستم مورد استفاده قرار میگیرد و بیشترین مقدار تولید آدنوزین تری فسفات را نیز دارد.
برگشت به حالت اولیه و وام اکسیژن
همانطور که گفته شد برای اینکه بدن از حالت استراحت به حالت فعالیت درآید واکنشهای متعددی در ماهیچه صورت میگیرد تا انرژی لازم کسب شود. همچنین برگشت بدن از حالت فعالیت به حالت استراحت نیز بسیار مهم است که آن را برگشت به حالت اولیه یا تجدید قوا (Recovery) گویند. ذخیره اکسیژن بدن هنگام فعالیتهای شدید به مصرف سوخت و ساز بدن میرسد؛ در نتیجه هنگام استراحت مقدار اکسیژنی که از ذخیره بدن گرفته شدهاست باید دوباره به بدن باز گردد و اسیدلاکتیک جمع شده در ماهیچهها نیز باید از سلولهای ماهیچهای خارج شودکه البته هر دو نیز هوازی هستند. انرژی از دست رفته بدن را وام اکسیژن (Oxygen Debt) گویند. مقدار وام اکسیژن برابر است با مقدار اکسیژن مورد نیاز در هنگام فعالیت؛ اگر نوع فعالیت شخص ملایم، طولانی و یکنواخت باشد بدن میتواند انرژی مورد نیاز را از هوا بگیرد و وام اکسیژن به وجود نمیآید والی اگر فعالیت شخص شدید باشد به طوری که او مجبور باشد با کمبود انرژی به فعالیت خود ادامه دهد مبتلا به وام اکسیژن میشود. مدت زمانی که طول میکشد تا بدن به حالت اول برگردد بستگی به مدت، شدت و آمادگی جسمانی فرد دارد؛ بعد از فعالیتها در ۲ یا ۳ دقیقه اول مصرف اکسیژن به شدت پایین میآید اما از این شدت به تدریج کاسته میشود تا به حالت یکنواخت برسد. اگر شخص بعد از فعالیت ورزشی خود، به جای استراحت، کار سادهای مثل راه رفتن یا دویدن آرام (سرد کردن) را انجام دهد اسیدلاکتیک موجود در بدن زودتر از بین میرود (در این مورد در فصل علم تمرین به طور کامل توضیح داده شدهاست)
فیزیولوژی دستگاه گردش خون
دستگاه گردش خون از رگها و قلب تشکیل شده که خون تیره و روشن در آنها جریان دارد. قلب به صورت تلمبهای قوی خون روشن را از راه سرخرگ آئورت و سرخرگ ششی به بدن میفرستد و از طرفی سیاهرگهای اجوف فوقانی و تحتانی خون تیره را از بدن به قلب بر میگردانند. به استثنای سیاهرگ ششی که خون روشن و تیره را از ششها به قلب بر میگرداند. یاختههای بدن پیوسته در حال فعالیت اند و برای ادامه حیات و فعالیت خود موادی را میسوزانند و مواد دیگری را دفع میکنند دستگاه گردش خون عهده دار رساندن مواد سوختنی به سلولها و خارج کردن مواد زائد است. قلب از چهار حفره تشکیل شدهاست. دو حفره در طرف راست و دو حفره در طرف چپ. دو حفره بالایی را دهلیز و دو حفره پایینی را بطن میگویند. بطن باعث به حرکت درآمدن خون در بدن میشود و اگر بطن از انقباض بیفتد خون از گردش خواهد ایستاد. شکل قلب شبیه مخروطی است که قاعده آن در بالا و نوک آن در پایین در انتهای بطنها است. در موقع ضربان دو دهلیز با هم منقبض میشوند و بعد از مدت نسبتاً کوتاهی دو بطن منقبض میشوند بعد از این انقباض توقف بیشتر و طولانی تری وجود دارد که به منزلة استراحت قلب است. مدت انقباض بطنها در افراد بالغ ۳/۰ ثانیه و مدت انبساط آنها ۵/۰ ثانیه طول میکشد روی هم رفته یک دوره کامل قلبی ۸/۰ ثانیه طول میکشد بنابراین در هر دقیقه تقریباً ۷۰ دورة قلبی صورت میگیرد و این رقم را تعداد ضربان قلب گویند. همانطور که میدانید در حدود 8 درصد وزن بدن را خون تشکیل میدهد یعنی یک شخص معمولی با وزن در حدود۷۰ کیلوگرم دارای ۵ تا ۶ لیتر خون است قسمت اعظم خون را گلبولهای قرمز تشکیل میدهند. کمبود اکسیژن معمولاً موجب افزایش گلبولهای قرمز خون میشود به همین دلیل است که در ارتفاعات زیاد ورزشکاران استقامتی قادر نیستند رکوردهای جهانی از خود به جا بگذارند چون در مکانهای مرتفع فشار نسبی اکسیژن در هوای تنفسی کم است و شخص ورزشکار قادر نیست به راحتی اکسیژن مورد نیاز را در هنگام ورزش از هوا کسب کند لذا این امر در کارایی او اثر نامطلوب میگذارد.
فیزیولوژی دستگاه تنفسی
طبق تعاریف کتابهای فیزیولوژی، تنفس عبارت است از جذب اکسیژن و دفع انیدریدکربنیک به وسیله سلول زنده، خواه این سلول حیوانی باشد، خواه نباتی.
عمل تنفس طی ۲ مرحله متمایز انجام میشود: تنفس خارجی: که عبارت است از حرکت هوا به داخل ریهها، انتقال اکسیژن از ریهها به خون و انتقال انیدریدکربنیک از خون به ریهها. تنفس سلولی یا داخلی: که شامل جذب اکسیژن و تولید انیدریدکربنیک توسط سلولها میشود. انقباض حجاب حاجز یا دیافراگم و پایین آمدن در محوطه شکم باعث بزرگ شدن قفسه سینه از بالا به پایین میشود. همزمان با این عمل ماهیچهها شکم بتدریج شل میشود و با انقباض ماهیچهها بین دندهای، دندهها به بالا کشیده میشود و استخوان جناغ را به جلو میراند این عمل قفسه سینه را از جلو به عقب میبرد و از طرفین بزرگ میکند؛ با بزرگ شدن حجم قفسه سینه فشار موجود در ریهها از فشار جو کاهش مییابد و باعث حرکت هوا به داخل ریهها میشوند این عمل آنقدر ادامه پیدا میکند تا فشار هوا در ریهها با فشار جو برابر گردد. کلیه اعمال بالا را دم گویند. اما عمل بازدم در حالت استراحت نتیجه شل شدن ماهیچهها دمی و بازگشت ریهها به حالت قبل صورت میگیرد با بالا رفتن ماهیچه دیافراگم و بازگشت حجم قفسه سینه به حالت استراحت، فشار هوا در ریهها از جو بیشتر میشود و آن قدر هوا از ریهها خارج میشود تا فشار ریهها دوباره با فشار جو برابر گردد،عمل بازدم در حالت ورزش کاملاً تغییر کرده واز یک حرکت پاسیو(غیر فعال) به یک حرکت اکتیو(فعال)تبدیل می شود.
حجم جاری و تهویه ریوی
حجم هوایی که با هر بار حرکت به داخل ریهها جریان مییابد را حجم جاری مینامند و مقدار آن بین ۴۰۰ تا ۵۰۰ میلی لیتر است و تهویه ریوی عبارت است از حجم جاری ضرب در تعداد حرکات تنفسی در دقیقه که معمولاً بین ۱۰ تا ۲۰ بار در حالت استراحت است. در هنگام ورزش تعداد حرکات تنفسی افزایش پیدا میکند و عمیق تر میشود تا جایی که در فعالیتهای شدید ورزشی ماهیچهها دمی و بازدمی فعال میشوند و تهویه ریوی تا حدود ۱۰۰ لیتر در دقیقه افزایش مییابد. حداکثر تهویه ریوی ممکن است به ۱۵۰ لیتر در دقیقه هم برسد ولی افزایش تهویه ریوی اگر از ۱۰۰ لیتر در دقیقه بیشتر شود به افزایش جذب اکسیژن کمکی نمیکند زیرا به نظر میرسد که انتقال اکسیژن بیش از این مقدار به بافتها، توسط ماهیچهها قلب و ماهیچهها تنفس محدود میشود.
ورزش حرفهای
ورزش حرفهای به ورزشی گفته میشود که در آن ورزشکاران برای فعالیت خود دستمزد دریافت میکنند. ورزش حرفهای در نقطه مقابل ورزش آماتور قرار میگیرد که در آن ورزشکاران فقط برای علاقه شخصی به ورزش میپردازند.
اغلب ورزشهایی که به صورت حرفهای دنبال میشوند، ورزشکاران آماتوری نیز دارند که تعداد آنها بسیار بیشتر از همتایان حرفهای خود است. طرفداران ورزش آماتور معمولاً ورزش حرفهای را در تضاد با اصول اخلاقی ورزش میدانند و معتقدند رقابتهای ورزشی نباید وسیله امرار معاش باشد. این گروه در برخی رشتههای ورزشی تا مدتها توانستند در مقابل جاذبههای مالی و تبلیغاتی ورزش حرفهای مقاومت کنند. برای مثال اتحاد راگبی برای سالها یک ورزش نیمهوقت مخصوص آماتورها باقیمانده بود.
ورزشکارانی که در سطح اول ورزش حرفهای فعالیت میکنند درآمدهای بسیار بالایی را دریافت میکنند. تایگر وودز بازیکن گلف اهل آمریکا پردرآمدترین ورزشکار دنیاست و بر اساس گزارش سال ۲۰۰۹ نشریه فوربز مجموع جوایز و دستمزدهایی که وی از فعالیتهای ورزشی خود دریافت کرده از یک میلیارد دلار فراتر رفتهاست. مایکل جردن بازیکن بسکتبال آمریکایی با ۸۰۰ میلیون دلار و میشاییل شوماخر راننده فرمول یک آلمانی با حدود ۷۰۰ میلیون دلار درآمد از ورزش در رتبههای بعدی قرار میگیرند.
ده بازیکن برتر تنیس دنیا به طور میانگین سالانه ۳ میلیون دلار دریافت میکنند و میانگین درآمد بازیکنان لیگ برتر بیسبال آمریکا ۳ میلیون و ۴۴۰ هزار دلار بودهاست. در فصل ۱۱-۲۰۱۰ میانگین دستمزد بازیکنان لیگ برتر فوتبال انگلستان ۷ میلیون پوند، بازیکنان سری آ فوتبال ایتالیا ۵ میلیون یورو و بازیکنان بوندسلیگا ۳.۳ میلیون یورو بودهاست.
ساعت : 1:11 am | نویسنده : admin
|
کلوپ ورزشی |
مطلب قبلی